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Abstract

Prediction of risks of various diseases and identification of factors that influence
these risks are important for public policies and disease diagnosis in healthcare. The
biomedical literature suggests that much of an individual’s later life health outcomes is
programmed at early stages of life. The programming is strongly modulated by epige-
netic inputs throughout life such as psychological, financial, social or chemical stress,
diets, smoking, substance use, and exercising, with stronger effects imparted in early
stages of life. Traditionally predicting effects of these factors on risks of diseases is
statistically examined using the logistic regression framework. Deep neural network
models have shown superior predictive performances in other fields and can be used
in the present context. This paper compares the effectiveness of these two approaches
in quantitatively predicting these risks as a function of the observable variables and in
identifying the influential variables that strongly affect the risks with the Health and Re-
tirement Studies (HRS) data. I compare its predictive performance with performances
of statistical procedures using confusion matrix and other indicators and then compare
their predictions of policy outcomes.

*Draft prepared for presentation at the 85th birthday celebration of Professor Kirith Parikh. Professor Parikh
and I crossed roads on many occasions. He has worked on many fields with bearings on public policies for
India. I have not directly worked with him, but I have known Professor Parikh’s work through his collaboration
with my Professor and mentor, the late Professor T.N. Srinivasan and his mentoring of my classmates and
contemporaries at the Indian Statistical Institute, New Delhi. I have felt his academic contributions, including
his contributions in the architectural designs of the Indian Statistical Institute, New Delhi and Indira Gandhi
Institute of Development Research, Mumbai where I have spent some time. This paper is dedicated in loving
memory of my mentor and professor the late T.N. Srinivasan. Disclaimer: The views, thoughts, and opinions
expressed in the paper belong solely to the author, and do not necessarily represent the views of any institution,
other group or individual..
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1. Introduction

The prediction of risks of various chronic diseases and identification of important factors
for such risks are important issues in healthcare industry and public policies. For instance,
in healthcare industry, the caregivers such as doctors and nurses may look at symptoms and
medical history of an incoming patient to determine what diseases are most likely for the
patient and then follow-up further tests and treatments. For public policy, prediction of risks
of various diseases in communities can help build up infrastructure to deal with the health
problems of the community. Various diseases affect the probability of disability, work loss
and early death. Estimating those risks can help better policies for social insurance pro-
grams such as disability insurance programs and for private insurance programs to calculate
the insurance premiums or for the regulators to regulate the private health insurance compa-
nies. What factors are important for development of diseases over a lifespan? Should we
be using statistical models or machine learning predictive models for predictions? Public
policies influence many of the individual characteristics that determine disease risks. From
public policy perspective, it is also important to estimate the quantitative effect of such char-
acteristics on the likelihood of various diseases, which can help designing policies to reduce
health inequality among social groups or improve health of the general population. I use
the Health and Retirement Surveys data for empirical exploration of the above issues in this
paper.

The biomedical literature suggests that much of an individual’s later life health outcomes
is programmed at early stages of life. The programming is strongly modulated by the epi-
genetic inputs created by the environment in mother’s womb at prenatal stage and by the
environment at early postnatal ages. The most important epigenetic factor is stress of any
kind – psychological, financial, social and chemical. Other significant factors are medical
care, diets, smoking, substance use, and exercising. These modulating factors are important
throughout life, with stronger effects imparted in early stages of life. At the cellular level,
aging and the incidence of age related diseases occur due to cellular senescence— i.e., after
a certain number of cell divisions, it stops dividing or have defective replications, causing
tissues or organs to increasingly deteriorate over time. What are the critical periods or the
developmental milestones in life-cycle that program the motions of health developments
over the lifespan of an individual?
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Research along this line beganwith the striking findings of Barker (Barker, 1990; Barker,
1998) and later of Gluckman et al. (2008). They found strong association between birth
weight and many later life chronic diseases, including hypertension, coronary artery dis-
eases, type 2 diabetes, and osteoporosis. Many other studies find that much of health de-
velopments in later life is determined very early in life — specifically during the prenatal
period, right after conception, i.e. in the womb. Sometimes it is said in social sciences that in-
equality begins in the womb. The effect of an environmental stress in the womb on later life
diseases and developmental outcomes is known as programming. Gluckman et al. (2008)
observes that “like the long latency period between an environmental trigger and the onset
of certain cancers, the etiology of many later life diseases such as cardiovascular disease,
metabolic disease, or osteoporosis originate as early as in the intrauterine development and
the influence of environments that created by the mother.” Many studies in social sciences
find that low socioeconomic status (SES) are associated with inflammation, metabolic dys-
regulation, and various chronic and age-related diseases such as type 2 diabetes, coronary
heart disease, stroke, and dementia, and that low SES create epigenetic changes in individ-
uals that lead to faster biological aging even after controlling for health-related behaviors
such as diet, exercise, smoking, alcohol consumption, or access to quality health care, see
for evidence, Simons et al. (2016).

Generally prediction and estimation of risks of disease are carried out in statistical multi-
nomial framework. In recent years machine learning techniques, especially the deep neural
network predictive models are producing much superior predictions compared to the statisti-
cal models. For instance, Chen et al. (2017) used patient data from various hospitals in china
to fit a neural network model and achieved high prediction accuracy rates. Machine learning
techniques are used for prediction and selection of factors in cancer research, see Kourou
et al. (2015) for a survey of these models. It is known that a feed-forward deep neural net-
work model with a sufficient number of neurons in the hidden layers can approximate any
function as closely as desired. That is, an MLP is one of the best universal function approx-
imator, see (Hornik et al., 1989; Cybenko, 1989). To many social scientists, the machine
learning techniques are mysterious. The purpose of this paper is to explain the structure of
deep feed-forward neural network models, how they differ from statistical models in terms
of prediction of risks and identification of important factors of the risks.

The rest of the paper is organized as follows. In section 2, I describe two modeling
paradigms, the multinomial logistic regression model from the statistics literature and the
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deep neural network model from the machine learning literature. In section 3, I describe the
Health and Retirement Study data set and the common set of variables that I use for fitting
models in both frameworks. In section 4, I report the numerical findings on predictive
performance and variable importance. In section 5, I discuss the issues in the dynamic
context. Section 6 concludes the paper.

2. Two modeling paradigms

Empirical investigation of our main issues — prediction of risks of various diseases and
identification of factors that influence these risks – involves two types of statistical mod-
els: explanatory models and predictive models. To explain it briefly using a unified general
framework covering problems in other fields, I use the terminology and notation in Shmueli
(2010). Most problems postulate a relationship, Y = F (X ), where X is a vector of
certain input constructs related to a certain set of output constructs Y through some theoret-
ical hypothesis or theories represented by F . In most situations including the present, the
underlying theory such as biology of aging and disease developments of humans provide
qualitative relationships, not quantitative specifications in terms of measurable variables
and a mathematical function. A statistical or econometric model operationalizes this rela-
tionship in terms of a vector of observable input random variables 𝑋 and a vector of output
random variables 𝑌 with a mathematical function 𝑌 = 𝑓(𝑋). Depending on data availabil-
ity or collection problems, one may have many choices for the set of input variables 𝑋, and
outcome variables 𝑌 and the functional form 𝑓 relating them, each configuration gives one
model (see for instance various types structural equation model specifications in Hair et al.
(2017), and Pearl (2009)).

In the present context, X consists of individual genetic make-up and epigenetic factors
over the life-span such as stressors that govern the cell divisions producing various health
outcomes over time. These are not directly observable or we do not have information on indi-
vidual genomes. I use various observable input variables𝑋, some of which can be improved
with public policies and some with individual behaviors. Our outcome health variable is a
single discrete random variable 𝑌 denoting an individual’s health status in middle age. The
set of health statuses is {1,2,3,4,5}, where 1 = normal health, 2 = Cardiovascular disease,
3 = Cancer, 4 = Other single disease, 5 = comorbidity. These are discrete values without
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distinguishing the degree of severity. In an explanatory model, 𝑓 is a causal function, i.e.,
it assumes 𝑋 causes 𝑌 . In a predictive model 𝑓 denotes the association between 𝑋 and 𝑌 .

Both statistical models and neural network models approximate the unknown function
𝑌 = 𝑓(𝑋) with a parametric function 𝑌 = 𝑓(𝑋; 𝛽) from some parametric family of
functions and chooses the best one that minimizes the expected value of a loss function,
L (𝑌 , 𝑓(𝑋)). Statistical models generally specify parametric functions in such a way that
parameters can directly provide the quantitative effect of an input variable on the outcome
variables. In the next subsection, I describe the most widely used such model, multinomial
logistic regression model.This the statistical model I use in this paper.

2.1. The Multinomial logistic regression model

The multinomial logistic regression model assumes that the conditional probability distri-
bution of 𝑌 given 𝑋 belongs to a family of exponential distributions with parameters 𝛽,
giving the following specification,

𝑙𝑜𝑔𝑃 (𝑌 = 𝑘|𝑋)
𝑃 (𝑌 = 1|𝑋) = 𝑋′𝛽𝑘, 𝑘 = 2, ..., 5. (1)

Taking 𝛽1 = 0, i.e., taking the normal health as the baseline or reference outcome, the
above is equivalent to,

𝑌 = arg max
𝑘=1,...,5

exp (𝑋′𝛽𝑘)
∑5

𝑗=1 exp (𝑋′𝛽𝑗)
≡ 𝑓(𝑋; 𝛽) (2)

In the above specification, the parameter 𝛽𝑗𝑘, the 𝑗𝑡ℎ component of 𝛽𝑘 corresponding to
the input variable 𝑋𝑗 has the interpretation that a unit increase in 𝑋𝑗 will change the log-
odd of disease 𝑘 by 𝛽𝑗𝑘. That is, 𝑒𝑥𝑝(𝛽𝑗𝑘) is the odds-ratio of outcome 𝑘 and outcome 1
associated with a one-unit increase in the input𝑋𝑗. In other words, a unit increase in𝑋𝑗 will
change the likelihood of disease 𝑘 by 𝑒𝑥𝑝(𝛽𝑗𝑘) times the likelihood of normal health. This
specification has the advantage that statistical estimate of the 𝛽𝑗𝑘 using a dataset provides
both statistical and numerical significance of this variable, and thus helps one to decide
which input variables are most significant for outcomes.
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2.2. The deep neural network model

Neural network is a highly parameterized universal function approximator of the form 𝑦 =
𝑓(𝑥; 𝑤), where 𝑥 is a set of inputs, and 𝑤 is a vector of parameters. This is of the same
nature as a statistical model. More precisely, suppose we have data on a set of individuals
of the type {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, ..., 𝑛}, where 𝑥𝑖 is a vector of individual 𝑖’s characteristics, and
𝑦𝑖 is a vector of the individual’s output levels and 𝑤 is a set of parameters common to all
individuals. The output could be a categorical variable for classification problems, it could
be a probability distribution over finite classes, as in our case, or it could be a continuous
variable for regression problems. The data generating process for 𝑦 as a function of x, is
not known. The goal is to approximate the unknown data generating function using the
observed data. This is the problem that both statistics and neural network deal with. In
neural network, the problem is to design a neural network architecture of the approximating
function 𝑦 = 𝑓(𝑥, 𝑤) and find a suitable learning algorithm to learn the parameters𝑤 of the
network using a training set of examples to minimize a loss function. This trained network
can then be used to predict 𝑦 for given characteristics 𝑥 of any individual.

The popularity and wide applicability of neural network lies in the fact that it designs
the approximator in a hierarchy of functions, joined together by compositions of functions,
that renders good properties in terms of ease of computation and closeness of the approxi-
mated function to the true data generating function. Most neural network models have the
following type of hierarchical functional form:

𝑦 = 𝑓(𝑥; 𝑤) ≡ 𝑓𝐿
𝑤𝐿 ∘ .... ∘ 𝑓1

𝑤1
(𝑥). (3)

Each function corresponds to a layer of artificial neurons. The role of each neuron is to
perform simple calculations and then pass the result on to the next layer of neurons.

Neurons in each layer get signals which are the outputs of the neurons of the previous
layer (also known as activation levels) that it is connected with. It sums them, I denote this
sum by 𝑧 and apply an activation function to produce an output also known as activation
level, which I denote by 𝑎. The activation level 𝑎 will then be passed on as an input to a
neuron that it is connected to in the next layer. The neurons of the last layer will compute
the output level taking the activation levels of the connected neurons of the previous layer.

For graphical illustration, consider a simple neural network architecture depicted in Fig-
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ure 1. It has three layers — layer 0: input layer, layer 1: hidden layer, and layer 2: output
layer. Last layer in the text is denoted by 𝐿, and hence 𝐿 = 2. Layer 0 has three input
neurons. The second layer has 4 neurons. and last layer has two neurons corresponding
to the two output levels, in our case probability of two events. In this neural network, the
hierarchical function specification is of the form:

𝑓(𝑥; 𝑤) = 𝜎2 (𝑧2 (𝜎1 (𝑧1(𝑥, 𝑤1)) , 𝑤2)) ≡ 𝑓2
𝑤2 ∘ 𝑓1

𝑤1(𝑥). (4)

The function 𝑧𝑖(𝑎𝑖, 𝑤𝑖) = 𝑤𝑖 ⋅𝑎𝑖−1 at each layer 𝑖 is a linear aggregator. In the notation,
𝑧𝑖 is a vector of functions, each component of which corresponds to a neuron of the 𝑖-th
layer. The function 𝜎𝑖 is a squashing function of the same dimension as 𝑧𝑖, each component
having the same function real valued function of one variable, known as activation function.
An activation function squashes the value of 𝑧𝑖 to a range such as to the range (0, 1) by
the sigmoid activation function (𝑓(𝑥) = 1/(1 + 𝑒−𝑥)), to the range (−1, 1) by the tanh
activation function (tanh(𝑥) = 2sigmoid(2𝑥) − 1) and to the range [0, ∞) by the most
widely used ReLu function (𝑓(𝑥) = max(0, 𝑥)). In many situations, better and faster results
emerge from the ReLu function because it does not activate all the nodes in the following
layers during training. I have mentioned about only a few widely used ones. There are many
other ones. In fact, any function can be an activation function.

For the output layer, which is the last layer of the network, when the goal is to estimate
the probability or the value of a binary outcome variable, one uses the sigmoid function;
when the goal is to estimate the probability or the outcome of a categorical output variable,
one uses the softmax function. Denoting a 𝑘 dimensional vector as ̃𝑧 = (𝑧1, ..., 𝑧𝑘), the
softmax function is a 𝑘 variate function 𝜎( ̃𝑧) = (𝜎1( ̃𝑧), ..., 𝜎𝑘( ̃𝑧)) defined as

𝜎𝑗( ̃𝑧) = 𝑒𝑧𝑗

∑𝑘
1 𝑒𝑧𝑖

, 𝑗 = 1, .., 𝑘. (5)

This is the function used in the multinomial logit model, see Eq. (2). Here 𝑧𝑗’s are non-
linear functions of input variables, e.g. the composite vector function 𝑧𝑗 ≡ 𝑧2

𝑗 (𝑋; 𝑤) in our
example above and in the Figure 1 below; whereas in the multinomial logit model Eq. (2),
it is a linear function 𝑧𝑗 ≡ 𝑋′𝛽𝑗, 𝑗 = 1, ..., 𝑘.
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The value of an activation function, 𝑎𝑖 = 𝜎𝑖(𝑧𝑖) is known as the activation level of the
neurons of the 𝑖-th layer. The activation levels of the 0-th layer, 𝑎0 = 𝑥, the inputs, fed to
the neural network from outside. The operation on the right is also performed component-
wise for each neuron at the 𝑖-th layer it computes the weighted sum of the activation levels
(outputs) of the neurons of the previous layer that the neuron of the 𝑖-th layer is connected
to. The weights used are specific to the neuron of the 𝑖-th layer. An activation function
𝜎𝑖 which generally taken to be same for all the neurons of the 𝑖-th layer) is applied to this
aggregated value 𝑧𝑖. These activation functions do not have any unknown parameters that
need to be estimated. These two computations—aggregation and activation—are shown as
a composite mapping 𝑓 𝑖

𝑤𝑖 for the neurons of the 𝑖-th layer.
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1: Hidden layer0: Input layer 2: Output layer

a11 = σ1(

z1
1︷ ︸︸ ︷
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11x1 + w1

12x2 + w1
13x3 + b11)

a21 = σ2(

z2
1︷ ︸︸ ︷

4∑
j=1

w2
1ja

1
j + b21) ≡ ŷ1

a22 = σ2(

z2
2︷ ︸︸ ︷

4∑
j=1

w2
2ja

1
j + b22) ≡ ŷ2

Loss: L(y1, y2; ŷ1, ŷ2); L = 2 is the last layer

Figure 1: A feed-forward deep neural network architecture.

There are different types of neural networks, depending on the functional form of 𝑓 in
Eq. (6). A deep feed forward neural network, also known as a feed forward neural network
with hidden layers or as a multi-layer perceptron (MLP) is a network architecture in which
there is no feedback of any neurons to itself or to others in the same layer. See Goodfellow et
al. (2016) for detailed descriptions of these terminologies and workings of the feed-forward
deep neural network models of various types and Graves (2012) for recurrent neural models
of various types, which I will not describe or use in this paper. The activation levels of
the neurons only feed forward to the neurons in the next layer. This is the reason also
why these types of neural networks are called feed forward neural network, as opposed to
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the recurrent neural network which allows feedback of a neuron to itself. The MLP has
good computational properties and an MLP is a great universal functional approximator:
It is shown Hornik et al. (1989) that with a sufficient number of layers in a hidden layer
can approximate a function to any level of precision desired. So a MLP can be used to
approximate the true data generating process as closely as one wants. How does one find
such a network, i.e., how does one choose the weights of the network.

I take the categorical cross entropy as the loss function. I have tried the Kullback-Leibler
divergence as the loss function and findings are similar and not reported.

To get a good approximation, the artificial neural network contains hundreds of thou-
sands of deep parameters 𝑤, how does one train the network, i.e., how to learn the best set
of parameter values using the data at hand. The learning is done by choosing the weights
to minimize a loss function together with a non-negative regularization term (in statistical
term a regulerization term corresponds to a shrinkage estimator) to avoid over-fitting.

1
𝑛

𝑛
∑

1
(L (𝑦𝑖, 𝑓(𝑥𝑖; 𝑤))) + 𝜆𝐶(𝑤). (6)

In the present context of learning about a probability distribution over the discrete set of
health outcomes, it is appropriate to take the loss function to be negative log-likelihood of
the sample and the additive regularization term 𝐶(𝑤) to be ||𝑤||1 known as 𝐿1 regularizer,
or to be ||𝑤||2, known as the 𝐿2 regularizer or take a convex combination of the two known
as the elastic-net or 𝐿1𝐿2 regularizer. The choice of 𝑤 to minimize the loss is done by a
gradient descent method. The neural network architecture Eq. (6) yields a very convenient
fast and automatic computation of the gradients 𝜕L /𝜕𝑤 using an algorithm known as the
back-propagation algorithm, used pretty much in all types of neural networks. The steps in
this algorithm are as follows:
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Backpropgation Algorithm

• Step 0: Assume an initial value for the weights 𝑤.
• Step 1: Compute all the activation levels starting at the input layer, i.e., 𝑓1

𝑤(𝑥)
forward through the layers 2, 3, ..., 𝐿 in Eq. (6), i.e., go through layer super-
scripts forward.

• Step 2: Compute gradients of the weight parameters𝑤 of various layers, starting
from the last layer, backward in layers, i.e., decreasing order in the subscripts in
Eq. (6).

• Step 3: Adjust weights using a steepest descent rule.

• Step 4: If the difference between the initial weights and these adjusted weights
is within a tolerance limit, stop, and take these adjusted weights as the optimal
weight estimate; otherwise, reset the initial weights to these adjusted weight,
and go to Step 1.

2.3. Estimation and prediction methods in two paradigms

In a parametric model such as in Eq. (1), a parameter will provide the effect of the input
variable on an outcome variable, only if the model is statistically identified in the sense that
given 𝑃(𝑌 |𝑋, 𝛽), there exists a unique 𝛽. By parameterizing the odds-ratio in Eq. (1), the
multinomial logit model is statistically identified.

Whether a parametric model is statistically identified or not, it can produce predictions
of outcomes, by predicting the outcome to be that which has the highest probability, i.e.,
argmax𝑘𝑃(𝑌 = 𝑘|𝑋, 𝛽). Other rules are possible too.

In statistics, to estimate parameters of a model from a sample of observations, one takes
negative the log-likelihood function as the loss function L (𝑌 , 𝑓(𝑋; 𝛽) and minimizes the
expected value of the loss function taken with respect to the empirical distribution, i.e., one
maximizes ∑𝑛

1 (L (𝑦𝑖, 𝑓(𝑥𝑖; 𝛽))), where 𝑦𝑖, 𝑥𝑖, 𝑖 = 1, ..., 𝑛 is a random sample. This op-
timum estimator ̂𝛽 is the maximum likelihood estimator. Under the assumption that the true
data generating process, i.e., the true 𝑓 is a member of the parametric family, the maximum
likelihood estimator ̂𝛽 is asymptotically efficient, consistent and asymptotically unbiased.
In some cases, these properties hold in the small sample as well. These properties are uti-
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lized to carry various hypothesis testing about the parameters such as if a parameter or a
set of parameters is statistically significant. For instance, we can look at the p-values to
determine if a variable has statistically significant effect. This assumption about the true
data generating process is hardly true in real life data. Breiman (2001b) provides a strong
critique of this statistical modeling approach. He introduced algorithmic tree based meth-
ods such as CART and Random Forests. Other models along this line are the linear additive
models (Hastie and Tibshirani (2006)), Support Vector Machines and neural network model.
These models can be found in Hastie, Tibshirani, and Friedman (2009) and Efron and Hastie
(2016).

For the machine learning models including the deep neural network models, the esti-
mated parameters do not have such interpretations; the models are generally not identified;
and there is no straightforward procedure to identify the input variables with significant
effects on the outcomes. For our deep neural network model, I adapt the permutation im-
portance technique introduced by Breiman (2001a) for random forests models.

2.4. Computational details

For both maximum likelihood estimation of the multinomial logit model in Eq. (1) and
the learning algorithm for the deep feed-forward neural network model in Eq. (6), I split
the dataset into the training dataset containing a random sample without replacement of 80
percent of the original sample and the remains as the test dataset.

For both the logistic regression model and the deep neural network model, I use the
training data to fit the model and use the test data to assess the performance of these two
fitted models and finally use the fitted models on the training data to compare the predicted
disease risks of various social groups and talk about their policy implications. These are
reported in a section following the next section that describes the dataset and the variables
used in this study.

I estimate the multinomial logit model R using the package nnet (Venables and Ripley
(2002)). There are other R packages such as glmnet and mlogit that can also fit multinomial
logistic models. The glmnet package, however, does not calculate the standard errors of the
parameter estimates and mlogit package invloves complex data transformations.
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To fit the feed-forward neural network model, I use the Tensorflow 2.3.0 (TensorFlow
Developers (2021)) and Keras 2.4.3 (Chollet et al. (2015)) in Python. While the R pack-
age nnet can also do feed-forward neural network, it is limited to only one hidden layer
and it does not incorporate early stopping, regularization, random dropout to find the best
possible fit of a deep neural network. The Keras and Tensorflow are more versatile. Other
machine learning packages such as Pytorch, Mxnet, Scikit Learn, can be also used. I found
Tensorflow and Keras to be convenient for the task of this paper.

The feed-forward deep neural network I finally chose had two hidden layers of 32 and
512 neurons. Given we have 11 input variables, and 6 output neurons for the output layer,
the network consists of 20,358 parameters, i.e., 𝑤’s to train. I used categorical cross entropy
as the objective function, which is equivalent of the log-likelihood of the multinomial logit
model. To handle over fitting, I used the reLu activation function in the two hidden layers,
elastic-net or𝐿1𝐿2 regularization of parameters in the two hidden layers, and early stopping,
i.e., stopping early instead of training it to the maximum iterations (known as epochs) if the
objection function stops improving early on. The results are reported and discussed after
describing the dataset and the variables.

3. The Dataset and the construction of variables

3.1. The dataset

I use the Health and Retirement Study (HRS) dataset for empirical analysis. A lot has been
written about HRS datasets — about its structure, purpose, and various modules collect-
ing data on genetics, biomarkers, cognitive functioning, and more, see for instance (Juster
and Suzman, 1995; Sonnega et al., 2014; Fisher and Ryan, 2017). The first survey was
conducted in 1992 on a representative sample of individuals living in households i.e., in
non-institutionalized, community dwelling, in the United States from the population of co-
hort born during 1931 to 1941 and their spouses of any age. “The sample was drawn at the
household financial unit level using a multistage, national area-clustered probability sample
frame. An oversample of Blacks, Hispanics (primarily Mexican Americans), and Florida
residents was drawn to increase the sample size of Blacks and Hispanics as well as those
who reside in the state of Florida”, (Fisher and Ryan, 2017).
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The number of respondents were 13,593. Since 1992, the survey were repeated every
two years, each is referred to as a wave of survey. New cohorts were added in 1993, 1998,
2004 and 2010, ending the survey up with the sample size of 37,495 from around 23,000
households in wave 12 in 2014. The RAND created many variables from the original HRS
data for ease of use. I create all the variables (with a few exceptions noted below) from
the RAND HRS dataset version P. The details of the Rand HRS version P can be found in
Bugliari et al. (2016). I use the original cohort first interviewed in 1992 so that we have a
homogeneous group of individuals with data for many years to avoid cohort effects in our
analysis. This sample has the largest sample size.

The HRS data collected information on if a doctor diagnosed that the respondent had
any of the severe diseases such as high blood pressure, diabetes, cancer, lung disease, heart
attack, stroke, psychiatric disorder and severe arthritis.

I drop respondents who were enrolled on to disability programs before the first survey
year 1992 and I also drop the spouses in the sample who were not born between 1931 to
1941, so that the respondents in our sample are between ages 51 to 61 and are not disabled
or dead by the first survey year 1992. I ended up with the final sample size of 9601 for this
analysis.

The table reports these statistics only up to the survey year 2006, as the individuals exited
the study because of disability or death before disability or censored because they are over
age 65 after this survey year. The table shows that the first period of this study in 1992 has
3026 individuals, which is 32 percent of the sample, in good health, 6483 individuals (i.e.,
68 percent) in diseased health state with one-or-more chronic diseases and 92 individuals
(i.e., 1 percent) left the study as they become disabled. No individuals died or were censored
because of ages higher than 65 — this is the result of sample selection criterion mentioned
above. In the next survey year 1994, out of 9509 non-exited individuals, 144 died without
any disability. In the survey year 1998 for the first time, 727 individuals in the sample left
our study because they reached ages above 65. The total number of individuals during the
last survey round of 2006 before they all become older than 65 is 1581, i.e. about 16 percent
of the original sample.
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3.2. Variables

Molecular biology literature mentioned in the introduction points out that the stressors of
the body cells are important determinants of the nature of cell divisions during early devel-
opment and later life health outcomes.1 While those stressors cannot be directly observed
or measured, many socioeconomic factors modulate those stressors and cell developments,
and thus affect later life health outcomes. Furthermore, early life health developments to-
gether with health related behaviors are important determinants of later life health outcomes.
Health behaviors are partly determined by cognitive and non-cognitive skills. Education
level thus can affect health behaviors and health developments in later life. Education also
determines earnings, which determine health related expenditures and thus health outcomes.
The HRS dataset does not have prenatal or postnatal data on individuals. It has a few vari-
ables on childhood socioeconomic status, which are correlates of the stressors of the cell
developments.

How does one quantify childhood SES? There is no consensus on what exactly con-
stitutes cSES. Some studies use different sets of variables to represent cSES. For instance,
Heckman and Raut (2016) and a few other studies use parents’ education as a measure child-
hood SES in modeling attainment of college degree. Luo and Waite (2005) used Father’s
and Mother’s education and the Family financial well-being as regressors without aggregat-
ing them into a single measure to examine how these variables affect a measure of mid-age
health outcomes for the HRS sample. It is useful to have a single measure of SES. Some
studies used the latent variable approach to come up with a statistically defined measure of
cSES. For instance, Vable et al. (2017) used a number of variables from the HRS dataset
to create their cSES measure. Similar to their approach, I use the latent variable statistical
procedure IRT on a set of parental characteristics during the childhood of the respondents.

Other important factors are biomarkers and mental health status in the mid-ages and
health related behaviors. Furthermore, the health development may vary by race and sex. I
describe the construction of these variables in this subsection.

I use the Item Response Theory (IRT) from the latent variable analysis literature to
construct an aggregate measure of childhood socioeconomic status, cSES, and two health

1Genetic make-up also controls gene expressions for producing proteins that create diseases but the epige-
netic factors creating the stressors are important as well.
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related behavioral traits, one capturing the propensity for using preventive care, the variable
behav_prev, and the other one is to measure penchant for drug and alcohol use, the variable
behave_drink.

The demographic variablesWhite and Female have the standard definition. The vari-
able College+ is a binary variable taking value 1 if the respondent has education level of
completed college and above (does not include some college), i.e., has a college degree and
more and taking value 0 otherwise.

cesd: I used the score on the Center for Epidemiologic Studies Depression (CESD)
measure in various waves that is created by RAND release of the HRS data. RAND creates
the score as the sum of five negative indicators minus two positive indicators. “The negative
indicatorsmeasurewhether the Respondent experienced the following sentiments all ormost
of the time: depression, everything is an effort, sleep is restless, felt alone, felt sad, and
could not get going. The positive indicators measure whether the Respondent felt happy
and enjoyed life, all or most of the time.” I standardize this score by subtracting 4 and
dividing 8 to the RAND measure. The wave 1 had different set of questions so it was not
reported in RAND HRS. I imputed it to be the first non-missing future CESD score. In the
paper, I refer the variable as cesd. Steffick (2000) discusses its validity as a measure of
stress and depression.

cogtot: This variable is a measure of cognitive functioning. RAND combined the orig-
inal HRS scores on cognitive function measure which includes “immediate and delayed
word recall, the serial 7s test, counting backwards, naming tasks (e.g., date-naming), and
vocabulary questions”. Three of the original HRS cognition summary indices—two indices
of scores on 20 and 40 words recall and third is score on the mental status index which is
sum of scores “from counting, naming, and vocabulary tasks”—are added together to create
this variable. Again due to non-compatibility with the rest of the waves, the score in the
first wave was not reported in the RAND HRS. I have imputed it by taking the first future
non-missing value of this variable.

bmi: The variable body-mass-index (BMI) is the standard measure used in the medical
field and HRS collected data on this for all individuals. If it is missing in 1992, I impute
it with the first future non-missing value for the variable. Following the criterion in the
literature, I create the variable bmi taking value 1 if BMI> 25 and value 0 otherwise.
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Now I describe the construction of the behavioral variables.

behav_smoke: This variable is constructed to be a binary variable taking value 1 if the
respondent has reported yes to ever smoked question during any of the waves as reported in
the RAND HRS data and then repeated the value for all the years.

behav_vigex: The RAND HRS has data on whether the respondent did vigorous exer-
cise three or more days per week. I created in each time period to be 1 if the respondent did
vigorous exercise three or more days per week in any of the waves and then that value is
assigned to all the years.

cSES: This variable is a binary variable measuring childhood SES. I constructed it us-
ing the IRT procedure as follows. From the HRS data I created four binary variables using
the original categorical data on family moved for financial reason, family usually got finan-
cial help during childhood, father unemployed during childhood, father’s usual occupation
during childhood (0 = disadvantaged and 1 = advantaged), and three tertiary variables two
on each parent’s educational levels (0 = High School dropout, 1 = some college, 2 = com-
pleted college and higher) and third on family financial situation (0 = poor, 1 = average,
2 = well-off).I used these seven variables as items in the IRT procedure to first compute a
continuous score estimate and then I define cSES = 1 if the score is above mean plus one
standard deviation of the scores and 0 otherwise.

cHLTH is a binary measure of childhood health constructed from the self-reported qual-
itative childhood health variable in HRS. I define cHLTH = 1 if the respondent reported very
good or excellent, and zero otherwise.

4. Numerical findings

Childhood health status (cHLTH) is an important factor for later life health outcomes and
educational attainments. cSES influences the stressors of the cells environment and thus will
affect cHLTH. Apart from cSES, other factors such as nutrition and pediatric health care are
important factors. We do not have data on those. I estimated a logit model of diseases with
right hand side variables as childhood health, childhood socioeconomic status, college+, and
other observable characteristics mentioned above.
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4.1. Predictions from two models

The (𝑖, 𝑗)-th element of a confusion matrix gives the number of people having actually dis-
ease 𝑖 are predicted by the model to have disease 𝑗, for all 𝑖, 𝑗 = 1, ...𝑘. The numbers
below in square brackets are percentages. The accuracy is defined as the percentage of
observations in the sample are correctly predicted by the model.

Table 1: Confusion matrix on test data using the multinomial logit model estimates on the
training data

Heath
Status Normal Cardiovas Cancer Other Comorbid Total
Normal 421 29 0 2 95 547

[76.97] [5.30] [0.00] [0.37] [17.37] [100.00]
Cardiovas 223 51 0 0 80 354

[62.99] [14.41] [0.00] [0.00] [22.60] [100.00]
Cancer 27 1 0 0 5 33

[81.82] [3.03] [0.00] [0.00] [15.15] [100.00]
Other 216 20 0 6 80 322

[67.08] [6.21] [0.00] [1.86] [24.84] [100.00]
Comorbid 210 37 0 2 175 424

[49.53] [8.73] [0.00] [0.47] [41.27] [100.00]

Accuracy = 38.9. Numbers in square brackets are percentages.

Confusion matrix on the test data using the parameter estimates from the training data
for the multinomial logistic model is shown in Table 1 and for the deep neural network
model in Table 2.

The tables show that multinomial logit model has accuracy both models have close to
40 percent accuracy, the deep neural network has slightly better overall performance, but
not significantly higher. Neither models predict correctly for the disease cancer. For the
disease category Other, deep neural network model perform better about 7 percent than the
multinomial logit model about 2 percent.

The accuracy of about 40 percent overall performance for deep neural network with
so many neurons as compared to accuracy rates of more than 95 percent accuracy rates
in handwritten character recognition problems may point to the fact that the effects of the
genetic factors and detailed measures of epigenetic factors throughout life are important
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Table 2: Confusion matrix on test data using deep learning model estimates on the training
data

Heath
Status Normal Cardiovas Cancer Other Comorbid Total
Normal 396 43 0 7 101 547

[72.39] [7.86] [0.00] [1.28] [18.46] [100.00]
Cardiovas 197 70 0 7 80 354

[55.65] [19.77] [0.00] [1.98] [22.60] [100.00]
Cancer 25 1 0 2 5 33

[75.76] [3.03] [0.00] [6.06] [15.15] [100.00]
Other 179 28 0 21 94 322

[55.59] [8.70] [0.00] [6.52] [29.19] [100.00]
Comorbid 181 52 0 17 174 424

[42.69] [12.26] [0.00] [4.01] [41.04] [100.00]

Accuracy = 39.4. Numbers in square brackets are percentages.

determinants disease risks.

4.2. Influential factors in two models

4.2.1. Multinomial logit regression model

Maximum likelihood estimates and their standard errors for the multinomial logit model are
reported in Table 3. Smaller the p-value, the stronger is the statistical significance of the
parameter estimate. p-values below 0.001 are marked with ***, greater than or equal to
0.001 but less than 0.01 are marked with **, and greater than or equal to 0.01 but less than
0.05 are marked with *. Starred parameter estimates of input variables for a disease are
taken to be the important factors for the disease.

These estimates show that whites have lower risk of cardiovascular diseases and higher
risks of other disease category.

Females have lower risk of cardiovascular diseases but higher risks of all other diseases.

Individuals who had good health in childhood have lower risks of diseases in other cat-
egory and two or more diseases.
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Table 3: Estimates from a multinomial logistic regression model

2-
Cardiovas 3-Cancer 4-other

5-
Comorbid

Intercept -0.321 -5.005 *** -0.995 *** 0.274
(0.214) (0.716) (0.228) (0.205)

white -0.576 *** 0.447 0.296 ** 0.055
(0.085) (0.324) (0.102) (0.090)

female -0.172 * 1.344 *** 0.549 *** 0.535 ***
(0.072) (0.257) (0.077) (0.073)

childhood SES 0.003 -0.492 -0.183 -0.046
(0.116) (0.374) (0.124) (0.121)

childhood Health 0.107 -0.033 -0.322 *** -0.400 ***
(0.081) (0.243) (0.080) (0.075)

college+ 0.033 0.386 -0.100 -0.155
(0.092) (0.266) (0.101) (0.101)

bmiH 0.668 *** 0.120 0.226 ** 0.830 ***
(0.075) (0.212) (0.074) (0.075)

CES-D 0.064 0.491 0.809 *** 1.385 ***
(0.173) (0.470) (0.163) (0.147)

cognitive scores -0.001 0.026 0.008 -0.021 **
(0.008) (0.025) (0.008) (0.008)

smoking 0.131 0.452 * 0.262 *** 0.352 ***
(0.072) (0.216) (0.075) (0.072)

exercising -0.135 -0.194 -0.074 -0.549 ***
(0.095) (0.271) (0.098) (0.086)

AIC 18364.363 18364.363 18364.363 18364.363
*** p < 0.001; ** p < 0.01; * p < 0.05.

High BMI individuals have significantly higher risk of all diseases and has no significant
effect on the risk of cancer. They have the risk of cardiovascular diseases about 𝑒𝑥𝑝(0.702),
i.e., 2.02 times higher than the risk of a low BMI individual.

Like high BMI, smoking significantly increases the risks of all diseases, except it does
not have significant effect on the risk of cardiovascular diseases.

The stress measured by the variable CESD has significant effect on a single disease in
other category and for comorbidity.

The risk of cancers has not many significant predictors, except that females and the
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smokers have have significantly higher risks.

4.2.2. Deep neural network model

Asmentioned earlier, unlike the statistical models that produce parameter estimates and their
p-values to estimate the importance and numerical effects on probabilities of outcomes, the
machine learning literature does not have a sound criteria for variable selection or its effect
on outcomes. I adapt the permutation importance technique introduced by Breiman (2001a)
for random forests models to the present deep neural network model of multinomial output
to identify influential factors as follows:

For each disease, we have computed a performance measure, the accuracy rate reported
in the diagonal elements in Table 2. Denote it by 𝛼. Take an input variable. If it has
strong effect on the predictive power of the risk, when we reshuffles its values among the
individuals, individual A gets B’s value and B gets F’s value and so on, then the predictive
performance will deteriorate at least for many permutations. If the input is not a significant
predictor of the risk, the accuracy will not decrease very much. For each input variable,
I draw 5,000 random permutations. Let 𝛼𝑖 be the accuracy rate in the shuffled input data
induced by the 𝑖-th permutation. Let 𝑚 be the mean of these 𝛼𝑖’s and 𝑠𝑑 the standard
deviation. If 𝛼 > 𝑚 + 2 ∗ 𝑠𝑑, I define the input strongly influential, denoted with ***.
If it is not strongly influential but 𝛼 > 𝑚 + 𝑠𝑑, I define it to be moderately influential,
denoted with **. If it is not moderately influential but 𝛼 > 𝑚, I define it to be slightly
influential, denoted with *. Otherwise the input has no significant effect on the prediction
accuracy. These influential levels are shown in Table 4. Note that these *’s only mean that
they have significant influence on predicting the outcome, but they do not tell us if the input
is changed by a unit, howmuch will be the effect on the risk of the disease. This criterion for
determining the influence of a variable may not work well if two input variables are highly
correlated. This also applies to the p-value criterion used in the statistical model.

An important variable and the degree of its importance is marked with *’s are almost
identical to those in the statistical multinomial logit model above with the exception that
two variables — childhood SES and College+ — show significant influence on the risks of
diseases in other category and in comorbidity category.
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Table 4: Influential variables for prediction of mid-age diseases

Variables Normal Cardiovas Cancer Other Comorbid
White *** * *
Female ** * ** *
Childhood SES * * *
Childhood Health * * *
College+ ** * *
High BMI *** *** **
CESD *** * *
Cognitive scores *** *
Smoking * * *
Exercising ** *

*** = strongly, ** = moderately, * = slighly influential based on the criterion of m -
3*s.d., m - 2*s.d. and m is greater than 0 respectively, where m is the mean and sd is the
standard deviation calculated with 5000 random permutations for each variable.

5. Discussions

The above is a static model of health outcomes at one point of time in life-cycle, i.e. in
early 50’s. Health progression over time and the feedback effect of earlier health status and
health behaviors on later health outcomes are also important to analyze from the healthcare
and public policy perspectives. For analysis of pathways through health states, the statistical
literature generally uses a multi-state time to event framework with Cox regression models
capturing the effect of time varying covariates. In Raut (2017) and Raut (2021), I have
used such models for prediction of disease risks over time. A multi-state statistical model
predicts the probability of disease incidence over many periods. These models assume a
Markovian structure and assumes that covariates influence the probabilities of health out-
comes through a linear aggregator 𝑋′

𝑡𝛽 at time 𝑡 in a Cox proportionality fashion, similar to
the multinomial logit model in Eq. (1). For estimation a method like maximum likelihood or
partial likelihood and to derive sampling theory of the parameter estimates, these statistical
models assume that the true data generating process is one of the member of the parametric
or semi-parametric family. Like the question we addressed about the above static model,
a similar question arises in this longitudinal case: Could a deep neural network model by
relaxing the above restrictions on functional form and the data generating process perform
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better than a statistical multi-state model?

A few papers (Faraggi and Simon, 1995; Biganzoli et al., 1998; Katzman et al., 2018;
Lee et al., 2018; Ranganath et al., 2016) used feed-forward MLP networks to compute the
survival probabilities when there is only one possible transition between two health states—
alive and death–with the exception of Lee et al. (2018) who studied competing risks, by
breaking death into various causes of death. Katzman et al. (2018) introduced a more gen-
eral non-linearity of the covariate effects, but still kept the Cox proportionality assumption.
Ranganath et al. (2016) assumed parametric form for the baseline hazard function as com-
pared to the non-parametric form in Cox model, but they made the covariate effects nonlin-
ear. Ren et al. (2019) consider a recurrent neural network, but the covariates are time-fixed
at the initial time step. They also restricted to only one transition, i.e., a two-state model.
None of these models deals with sequential framework where new information arise with
time steps and update the previously estimated transition probability estimates. In these
models, all the inputs from the past, present and the future times in the sample determine
current probabilities. These models have no ways to store information learned from the past
inputs. After training these models, when new data arrive, these models cannot use this new
data to update the predicted probabilities without losing information in the early periods.

A recurrent neural network (RNN) uses feedback connections or self connection of neu-
rons in the hidden layer, and thus is capable of storing important information learned in
the past in these recurrent neurons. Like an MLP is a universal function approximator, an
RNN has the similar nice property that with sufficiently large number of hidden recurrent
neurons, an RNN can approximate any sequence-to-sequence mapping (Graves et al., 2014;
Hammer, 2000; Siegelmann and Sontag, 1992). These models have shared weights between
time-steps and in the input and output layers, as a result when new data arrive after training
the model, it can use all the past important information learned from the past to this new data
point and predict the future probabilities in the light of this new data. Since training such
models involve computation of gradients using backpropagation through time, it involves
multiplication of numbers less than one many times, leading to vanishing gradient problem.
In these scenarios, it cannot keep useful information in memory from the long time back.
Overcoming these problems led to a few modifications of the RNN framework. The most
successful of them is the long short memory (LSTM) RNN model introduced by Hochreiter
and Schmidhuber (1997). For more on LSTM-RNN models, see Graves (2012). I use this
LSTM-RNN model for prediction of time-to-event probabilities of health outcomes.

22



Another problem is with the training data size. To obtain good predictive performance,
these models require a large number of training examples. In drug discovery problems or
with surveys or lab experiments, obtaining large number of examples is costly. To over-
come small data problem, (Altae-Tran, 2016; Altae-Tran et al., 2017) introduced further
refinement of the LSTM-RNN framework. I do not adopt such modifications.

In Raut (2020), I formulated an LSTM-RNN model of multi-state time-to-event model,
implemented in Keras module of Tensorflow 2.0 for Python and compared its predictive
performance with that of a multi-state statistical model. Similar to the accuracy rate as
the criterion to evaluate performance of the models in multi-class classification given in
perivious section, I used the c-index criterion to discriminate the performance of various
models in predicting time-to-event probabilities. I found that a LSTM-RNN type neural
network model did better job in predicting time-to-event probabilities than a multi-state
statistical model.

6. Conclusion

This paper addresses two issues: First, to predict risks of diseases and to detect influen-
tial variables for these risks, how does a statistical multinomial logit model compare with
a deep neural network model? Second, using the Health and Retirement Surveys data, the
paper evaluates these two types of models and examines how early childhood factors, and
health behaviors affect risks of diseases for adults in their early 50’s. The paper consid-
ers four categories of chronic diseases: Cardiovascular, Cancer, single other disease, and
comorbidity. The input variables used are dummy variables — White, Female, Childhood
SES, Childhood Health, College+, High BMI, Smoking and Exercising — and continuous
variables — CESD and Cognitive scores. The variable CESD is an aggregate measure of
various stresses.

The paper explains that under strong assumptions on the true data generating process,
the statistical models use maximum likelihood or similar optimizing methods to estimate
parameters of the model, derive sampling properties of the estimates which provide criteria
such as p-values and other hypothesis testing procedures to pick important variables and
select a best model out a set of models. An estimated parameter in most models directly
provides a numerical estimate of the quantitative effect of the associated variable on the risk
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of diseases. On the other hand, a deep neural network model has more general assumptions
on the data generating process, but it does not have a good method to identify important vari-
ables and to estimate the numerical effect of a variable on the risks of various diseases. To
identify the influential variables for prediction of risks in the deep neural network framework
involving multinomial outcomes, this paper adapts the permutation importance technique
of Breiman (2001b) which he introduced for random forests models.

The paper uses a common randomly drawn training dataset to fit both types of models
and computes their predictive accuracy on a common disjoint test dataset and compares the
predictive performance of the two models. The paper finds that the statistical multinomial
logit model has an accuracy rate of 38.9 and the deep neural network model has a slightly
higher accuracy rate of 39.4.

Both models pick the same variables as influential in the prediction of risks, with the
exception that while the childhood SES and College+ variables are not statistically signifi-
cant (i.e., not influential) in the statistical multinomial logit model, these two variables are
influential in the deep neural network model for the prediction of risks of the single disease
in the other category and for the risks of comorbidity. To get the quantitative effect of a
variable on risks of diseases, the associated parameter estimate in statistical multinomial
logit model directly provides that effect. Whereas, a deep neural network model does not
have such straightforward estimate or interpretation of parameters.

From the fitted models, the paper finds that the childhood health, BMI and smoking
habits have quite strong effects on risks of various diseases. More specifically, the paper
finds that a high BMI individual has the risk of cardiovascular disease 1.95 times higher
than the risk of cardiovascular disease of a low BMI individual. An individual who smokes
has the risk of cancer 1.57 times higher than the risk of cancer of an individual who does
not smoke.

While the performance of the deep neural network model in this paper does not show
significant improvement in performance over the statistical multinomial logit model, Raut
(2020) formulated a deep LSTM type recurrent neural network (RNN) model of risk of dis-
eases over time (i.e., time series of risks) and compared its performance with the statistical
analogue, a multi-state time-to-event model. Both models were fitted using the Health and
Retirement Survey data. Raut (2020) found that the deep LSTM-RNN model attained sub-
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stantially higher performance compared to the statistical multi-state time-to-event model. It
is possible that other type of deep neural network architectures such as convolutional neural
network (CNN) architecture and a much bigger dataset with many more relevant variables
may provide significantly better performance compared to the feed-forward deep neural
network considered in this paper. Only more empirical research can tell.
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