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Identification of Structural Discrete Dynamic Programming
Models

1 Introduction

To incorporate Hotz and Miller, 1993
The rest of the paper is organized as follows. Section 2 describes the basic framework

of structural dynamic programming models and notations of the paper. Section 4 deals with
the issues related to identification of the structural parameters of the dynamic programming
model. Section ?? concludes the paper.

Example 1 (An Example).

We give a preschool investment decision problem of an altruistic parent from Heckman
and Raut, 2016.

2 The Basic Framework

The choices of an individual with observable characteristics x are restricted to the set A (x, ε) ≡
{a ∈ A|c (w (x, ε) , a) > 0} . The choice a yields direct utility from life-time annualized
consumption and indirect utility through its effect on child outcomes and welfare, as rep-
resented in the following Bellman equation corresponding to the parent’s preschool invest-
ment decision problem

V (x, ε) = max
a∈A(x,ε)

u (x, ε, a) + β
∫

V
(
x′, ε′

)
p
(
dx′, dε′|x, ε, a

)
(1)

where V(.) is the intergenerational welfare function, known in the dynamic programming
literature as the value function, u(.) is the felicity index of yearly permanent consumption
over the whole lifetime of the parent, and the parameter β measures the degree of parental
altruism toward the child.

Under general regularity conditions on u(.), p (dx′, dε′|x, ε, a) and β, the value func-
tion V (x, ε), and a measurable optimal decision rule a∗ (x, ε) exist (see, for instance, Bhat-
tacharya and Majumdar, 1989, Theorem 3.2). Given u(.), p (dx′, dε′|x, ε, a) and β, sat-
isfying the regularity conditions, we carry out a Lucas-Critique free policy evaluation by
examining a policy’s effect on the individual optimal decision a, on the intergenerational
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welfare level V, and we also examine the intergenerational long-run aggregate effect of the
policy on the economy by aggregating individual choices with respect to the long-run pop-
ulation distribution, also known as the invariant population distribution, of the equilibrium
transition probability distribution p (dx′, dε′|x, ε, a∗ (x, ε)).

To be able to do this, we need to estimate the structural parameters. Our data consists
of a sample of parent’s observable state x, child’s observable state x′, and parents deci-
sion a. Suppose a vector of parameters ξ p specifies the transition probability distribution
p (dx′, dε′|x, ε, a). Our problem is then to statistically estimate the structural parameters
ζ =

{
u(.), ξ p, β

}
given observable information on a random sample of parent-child pairs

y =
{
(xi, x′i), ai

}n
i=1 such that the predicted behaviors of the sample from the model are

close to observed behavior. We denote the log-likelihood function of the sample by Ly(ζ).
Estimation of the model involves two steps: For a given ζ, calculate the probability dis-
tribution of the endogenous variables ai|xi and x′i|xi, ai using the model to form the log-
likelihood of the sample Ly(ζ) and then use an appropriate estimation procedure to choose
a ζ.

Two questions need be addressed to that end. First, is the computation of the likelihood
Ly(ζ), which involves solving the dynamic programming problem in Eq. (1) repeatedly
for each (x, ε), feasible with the currently available computing technology, especially when
ε is a continuous multivariate random variable? Second, are the structural parameters of
the model identified (the definition of identification is stated later)?

The answer to both questions is in general no. Following the literature, we make sim-
plifying assumptions to transform the above structural dynamic programming problem into
a random utility model of discrete choices. We will show that these assumptions greatly
simplify the computation and the identification of the structural parameters of the model.
Given those assumptions, we will see two facts: First, the set of structural parameters ξ p

determines the transition distribution p (x′|x, a) of the observable state variables, which is
the mixture distribution of the original transition probability distribution, more specifically
p (x′|x, a) =

∫
p (x′, ε′|x, ε, a) dε|x dε′|x′. Second, the set of optimal choice probabil-

ities P (a|x) , a ∈ A (x) , x ∈ X over the observed discrete choices depends on ξ p only
through p (x′|x, a) .

Notice that the optimal choice a is treated as an exogenous variable in the estimation of
p (x′|x, a) , the maximization of joint likelihood of two components is more efficient. To
make estimation task computationally manageable, however, again following the trend in
the literature, in place of ξ p, we take an estimate of p (x′|x, a) as our fixed parameters in
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the vector of parameters ζ, and in place of β, we calibrate β from other information, and
then form the likelihood of the sample of observed discrete choices ai|xi for identification
and estimation of the remaining parameters.

2.1 Notation

In the rest of the paper, our parameter vector is ζ = {u (x, a) , p (x′|x, a) , β}, a ∈ A (x) , x ∈
X where p (x′|x, a) and β are fixed. Denote by Ξ the set of all such parameter values. We
denote byLy(ζ) the log-likelihood of the sample of observed choices y = {ai|xi, i = 1...n}.
Given a set of conditional choice probabilities {P (a|x) , a ∈ A (x) , x ∈ X} which de-
pends on ζ, the log-likelihood function Ly(ζ) of the sample is defined.

Let Jx denote the number of elements in the feasible choice set A (x) . Denote by
J = ∑x∈X Jx. Assume that X is a finite ordered set of M elements.

Denote by F (a) = [ f (x′|x, a)]x′,x∈X the Jx × Jx′ conditional transition probability
matrix given a choice a ∈ A (x) where the element f (x′|x, a) corresponding to the row x
and the column x′ is the probability of the child moving to state x′ given that his parent is
from the state x and he had made a choice a ∈ A (x) . We denote by F (x, a) the row vector
of F(a) corresponding to the parent’s state x.

The vector of conditional choice probabilities denoted byP = {P (a|x) , a ∈ A (x) , x ∈ X}
is ordered by the primary index of ordering in X and the secondary index of the ordering in
A. For each x, the component vector of conditional choice probabilities {P (a|x) , a ∈ A (x)}
belongs to a Jx − 1 dimensional simplex. The set of all vectors P of conditional choice
probabilities 4 is a subset of <MJ

++ which is restricted to the interior of the M-fold cross
product of the Jx − 1 dimensional simplices.

For any function v (x, a) , its vector representation is a J × 1 vector v (i.e., with the
same symbol v) in which the function values v (x, a)’s are ordered in the same way as in P .
For any scalar or a vector function w (x) , we denote by w (again using the same symbol w
to denote it) the values of w stacked in rows in the same order as in the ordered set X.

For any random vector or a random variable w (x, a) , we denote its expectation with re-
spect to a by w̄ (x) , i.e., w̄ (x) ≡ ∑a∈A(x) w (x, a) P (a|x) , (with the convention that when
w is a random vector, the product inside this summation is element-by-element). Define
the M × J matrix Π derived from a vector of conditional choice probabilities P by
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Π

M×J
=

 P (a = 1|x1) ... P (a = J|x1) ... 0 ... 0
0 ... 0 ... 0 ... 0
0 ... 0 ... P (a = 1|xM) ... P (a = J|xM)


and the transition matrices in matrix notation as a J × M matrix F by,

F
J×M

=



f (x′1|x1, a = 1) ... f
(
x′M|x1, a = 1

)
...

f (x′1|x1, a = Jx1) ... f
(
x′M|x1, a = Jx1

)
...

f (x′1|xM, a = 1) ... f
(
x′M|xM, a = 1

)
...

f (x′1|xM, a = JxM) ... f
(
x′M|xM, a = JxM

)


3 Class of Structural Models

The structural estimation of the original problem is computationally intractable. Similar
to Rust, 1994, we make the following simplifying assumptions to transform the original
model in Eq. (1) to a random utility model. In the next two sections, we utilize these
simplifications to find conditions for identification and estimation of structural parameters.

We assume that w (x, ε) and hence A (x, ε) does not depend on ε, i.e., w () does not
contain any unobservable idiosyncratic shocks. However, we assume that ε represents a
taste shifter for individual preferences and constitutes our only source of unobserved het-
erogeneity, the specific nature of which is stated formally in the following assumption.

Assumption 1. u (x, ε, a) = u (x, a) + ε (a) , and support of ε (a) is the real line for all
a ∈ A (x) .

We also make the following additional assumptions.

Assumption 2. The transition probability p (x′, ε′|x, ε, a) = g (ε′|x′) f (x′|x, a) for some
twice continuously differentiable density function g with finite first moment.

Assumption 3. The set of observable individual characteristics X =
{

x1, ..xM} is a finite
ordered set.

Under Assumption 1 - Assumption 3 , we have
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V (x, ε) = max
a∈A(x)

u (x, a) + ε (a) + β ∑
x′∈X

∫
V
(
x′, ε′

)
g
(
dε′|x′

)
f
(
x′|x, a

)
(2)

Denote the value function, after integrating out the unobservable component of the state
variable, by v(x) ≡

∫
V (x, ε) g (dε|x). Integrating both sides of Equation (2) with respect

to the conditional density g(dε|x), and utilizing this notation for v (x), we have

v (x) =
∫

max
a∈A

[ṽ (x, a) + ε (a)] g(dε|x) (3)

where

ṽ (x, a) ≡ u (x, a) + β ∑
x′∈X

v
(
x′
)

f
(
x′|x, a

)
(4)

= u(x, a) + βF (x, a) .v

Eq. (3) above is a random utility model in which the function ṽ (x, a)measures the common
utility that an individual of observable characteristics x derives from a choice a ∈ A (x) .
Denote by

Ω (x, a) =
{

ε|ṽ (x, a) + ε (a) ≥ ṽ
(
x, a′

)
+ ε

(
a′
)

, for all a′ ∈ A (x)
}

(5)

the set of individuals with observed characteristics x who made a as their optimal choice.
The conditional choice probabilities are then given by

P (a|x) =
∫

Ω(x,a)
g (dε|x) . (6)

By partitioning the domain of integral in Eq. (3) into disjoint regionsΩ (x, a) , a ∈ A (x) , x ∈
X and then integrating we have the following,

v (x) = ∑
a∈A(x)

P (a|x)
[

u (x, a) +

∫
Ω(x,a) ε (a) g (dε|x)

P (a|x) + β ∑
x′∈X

v
(
x′
)

f
(
x′|x, a

)]
= ∑

a∈A(x)
P (a|x) [u (x, a) + e (x, a) + βF (x, a) · v] ...(*) (7)

= ū (x) + ē (x) + βF̄ (x) · v

where
e (x, a) ≡

∫
Ω(x,a)

ε (a) g (dε|x) /P (a|x) (8)

6



Identification of Structural Discrete Dynamic Programming Models L. K. Raut

in line (*) is the conditional expectation of the component ε (a) of the random vector ε given
x and a. Writing the above in matrix notation, we have

v = ū + ē + βF̄ · v ≡ Φ (v, ζ) (9)

Let v (ζ) be a fixed point of the map Φ (v, ζ) for given ζ ∈ Ξ, and denote by P (v) the
conditional choice probabilities in Eq. (6) for a given value function v. Then the computa-
tion of the likelihood of the sample is simplified to the computation of the fixed point of the
above map Φ (v, ζ) . The computation of P (a|x) , and e (x, a) involve multi-dimensional
numerical integration, which may make computations extremely slow. Both computational
tasks are, however, substantially simplified under the following assumption:

Assumption 4. The components of ε are independently and identically distributed as ex-
treme value distribution with location parameter 0 and scale parameter 1.

McFadden, 1981 has shown that under Assumption 4, e (x, a) = (λ − ln P (a|x)),
where λ is the Euler-Mascheroni constant, with a numerical value of λ = 0.57721566, and
the conditional choice probability P (a|x) has the following Logit representation,

P (a|x) = eṽ(x,a)

∑a∈D eṽ(x,a′)
(10)

The above strategy of computational simplification was pioneered by Rust, 1987. The com-
putational burdens could be, however, further simplified as follows: From Eq. (9) it follows
that v = [IM − βF̄]−1

[ū + ē] . Substituting this in Eq. (4), we have

ṽ (x, a) = u (x, a) + βF (x, a) [IM − βF̄]−1
[ū + ē] (11)

It is easy to see that given P0∈4, the right hand side of the above, and hence, a new
vector of conditional choice probabilities say P1∈4 can easily be computed by substitut-
ing it in Eq. (10). We represent this relationship for each structural parameter ζ ∈ Ξ by
P1 = Ψ (P0, ζ) . Following the line of argument in Aguirregabiria and Mira, 2002, it is
easy to show that for each ζ ∈ Ξ, there exists a unique fixed point P(ζ) to the mapping
Ψ (P , ζ) , and starting from any initial P0∈4, the iterative process Pn+1 = Ψ (Pn, ζ) ,
n ≥ 0 converges to the fixed point P(ζ)∈4. Thus, for each structural parameter ζ ∈ Ξ,
there exists a unique likelihood of the sample Ly (ζ) , the computation of which is brought
down to computation of the fixed point of the mapping Ψ on the finite dimensional space
4.
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4 Identification of Structural Parameters

In the previous section we saw that given ζ ∈ Ξ, there exists a unique likelihood function
Ly (ζ) . To be able to estimate ζ ∈ Ξ, the model should be identified in the sense that

Ly (ζ) = Ly
(
ζ ′
)

a.e. if and only if ζ = ζ ′, (12)

the a.e. is with respect to the dominant probability measure defining the likelihood of the
sample. Following Rao, 1992, we say that our model is globally identified if the relation-
ship in Eq. (12) holds for any two ζ, ζ ′ ∈ Ξ, and is locally identified around a particular
parameter ζ ∈ Ξ, if the relationship in Eq. (12) holds for all ζ ′ ∈ Ξ in a neighborhood of
ζ.

To find reasonable conditions for identification, from Eq. (5) note that the optimal
choices are invariant if we add a location mx and divide both sides by a scale factor σx > 0,
for each x ∈ X.Thus it follows that we can recover the utility function only up to a scale and
location. Given this fact, we restrict the one period utility function (u (x, a) , a ∈ A (x)) to
lie in a Jx − 1 dimensional open submanifold of<Jx for each x ∈ X. We take each possible
utility vector (u (x, a) , a ∈ A (x) , x ∈ X) to lie in the cross product (or equivalently in the
direct sum, if we view<Jx to be embedded in<J) of these Jx − 1 dimensional submanifolds
over all x ∈ X. There are many such manifolds, and up to diffeomorphisms they are all
equivalent. We define one such manifold U using the map φ : 4 3 P 7→ u ∈ <J (which
reads as, φ takes a member P in 4 to a member u in <J) by

u =
[

IJ + βF (IM − βF̄)−1 Π
]−1

[ṽ − ẽ] ≡ φ (P) (13)

where ṽ (x, a) = ln P (a|x) and ẽ = βF (IM − βF̄)−1 Πe. Take U = φ−1 (4) . It can be
shown that the set U is a J − M dimensional smooth manifold. Given parameters β, and
F fixed, we restrict our parameter space Ξ to be such that the u-component of a parameter
vector ζ ∈ Ξ is restricted to lie in U . The most general non-parametric family that we
can restrict our parameters u to lie in is U . Our nonparametric identification issue boils
down to the question, under what conditions can we identify our structural model in this
non-parametric family of U? Theorem 1 addresses this, using the following assumption

Assumption 5. Given the vector of transition probabilities F, the degree of altruism param-
eter β is such that (1) 0 ≤ β < 1 and (2) IJ + βF (IM − βF̄)−1 Π is of full rank.

Note that there always exist such β′s at least near β = 0. Also note that β = 1 will
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violate condition (2) since in that case IM − βF̄ is not invertible, as each row will add-up
to zero.

Theorem 1 (Nonparametric Identification). Suppose the components β and F of the
parameter vectors are fixed. LetP ∈ 4 be a vector of conditional choice probabilities that
satisfyAssumption 5. Then there exists a unique utility function (u (x, a) , a ∈ A (x) , x ∈ X)

∈ U that generates P as the optimal solution to the choice problem in Eq. (1). Further-
more, the model in Eq. (1) is globally or locally non-parametrically identified depending
on whether Assumption 5 holds globally or locally.

Proof. LetP ∈ 4 be a vector of conditional choice probabilities that satisfy Assumption 5.
Note that writing Eq. (11) in matrix notation, we have ṽ =

[
IJ + βF (IM − βF̄)−1 Π

]
u +

βF (IM − βF̄)−1 Πe,where F̄ is the expectation of F (a)with respect toP . Taking ṽ (x, a) ≡
ln P (a|x) , and denoting by ẽ = βF (IM − βF̄)−1 Πe, we have

u =
[

IJ + βF (IM − βF̄)−1 Π
]−1

[ṽ − ẽ] (14)

Thus by Assumption 5, for each P , there exists a unique u ∈ U .
We now prove the second part regarding the nonparametric identification. Note that

the data on distribution of choices given a fixed number of individuals n (x) (a positive
integer) for each observed value of individual characteristics x ∈ X can be summarized
as an ordered vector y defined similar to P by y = (n (a|x) , a ∈ A (x) , x ∈ X) where
n (a|x) is the number of individuals who chose a ∈ A (x) given their characteristics x ∈ X.
The likelihood of the sample can be written as follows

Ly (P) = ∏
x∈X

n (x)!
∏a∈A(x) na (x)!

exp

(
∑

x∈X
n (x) ln

(
1 −

Jx−1

∑
a=1

P (a|x)
))

×

exp

(
∑

x∈X

Jx−1

∑
a=1

n (a|x) ln

(
P (a|x)

1 − ∑Jx−1
a=1 P (a|x)

))
= h (y) g (η) exp

(
y′η
)

, where η = (η (a|x) , a ∈ A (x) , x ∈ X) ,with

η (a|x) = ln

(
P (a|x)

1 − ∑Jx−1
a=1 P (a|x)

)
, and g (η) = −∑ n (x) ln

(
1 +

Jx−1

∑
a=1

exp η (a|x)
)

,

and h (y) is the multiplicative component in the first expression. It follows from the above
that Ly (P) is an exponential distribution. The determinant det(I (P)) of the Fisher in-
formation matrix I (P) of Ly (P) at any parameter vector P ∈ 4 can be shown to be
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det(I (P)) =
[
∏x∈X ∏Jx−1

a=1 P (a|x)
]−1

, which is always > 0 since each P (a|x) > 0.
Since det(I (P)) is a continuous function ofP , there exists a neighborhood ofP in4 such
that the Fisher information matrix is of full rank for all P in that neighborhood. More-
over, note that the function g (η) is continuously differentiable in η. Hence by Prakash Rao
(1992, Theorem 6.3.2), for any P ′ in a neighborhood of P , we have Ly (P) = Ly (P ′)

a.e. ⇔ P = P ′. But u = φ (P) in Eq. (13) is a 1-1 function from 4 to U around
P ∈ 4 that satisfies Assumption 5. Hence for any ζ ∈ Ξ such that the corresponding
P (ζ) satisfies Assumption 5, there exists a neighborhood of ζ in Ξ such that for any ζ ′

in that neighborhood, Ly (P (ζ)) = Ly
(
P
(
ζ ′
))

a.e. ⇔ ζ = ζ ′. Hence the model in Eq.
(1) is locally nonparametrically identified around a ζ whose associated P (ζ) satisfies As-
sumption 5. It is also clear that if Assumption 5 is true for all P ∈ 4, the model in Eq. (1)
is also globally identified. Q.E.D.

The conditional choice probabilities P = {P (a|x) , a ∈ A, x ∈ X} are nothing but the
aggregate demand functions of discrete choices a ∈ A as a function of individual charac-
teristics x ∈ X. The characteristics x ∈ X is acting like a price of the Marshallian demand
function. Nonparametric identification problem in our set-up can be viewed as the well-
known aggregation problem of the consumer theory: Given a system of demand functions
P ∈ 4, when does there exist a utility function u (x, a) that generates P as the optimal
solution of problem in Eq. (1)? The above theorem provides conditions for an analogous
aggregation problem in the present context of structural dynamic programming problem.

Suppose instead of most general non-parametric utility specifications for the parameter
vector ζ, we parametrize u (and also possibly β, but F is still assumed to be fixed) to have
a parametric form ζ : Θ → Ξ, where Θ ⊂ <k, k < J − M + 1 is an open set. When can
we identify such parametric models? To state our sufficient condition for this, we recall
a definition from the Differential Geometry. A map f : Θ → 4 is an immersion at θ ∈
Θ, an open subset of <k, if the differential map d fθ : <k → Tf (θ) (4) is injective, i.e.,
one-to-one, where Tf (θ) (4) is the tangent space of the manifold4 at f (θ).

Theorem 2 (Parametric Identification). Let Θ ⊂ <k be an open set. Let ζ : Θ → Ξ
denotes a family of parametric models. A parametric model is locally identified at θ ∈ Θ
if and only if the map P (ζ (θ)) : Θ → 4 is an immersion at θ. The parametric model is
globally identified if and only if the map P (ζ (θ)) is an injective map.

Proof. SinceP (ζ (θ)) is an immersion at θ, there exists a neighborhood around θ in Θ
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such that P (ζ (θ)) is one-one in this neighborhood. For any θ′ in this neighborhood of θ,
Ly (P (ζ (θ))) = Ly

(
P
(
ζ
(
θ′
)))

a.e. implies P (ζ (θ)) = P
(
ζ
(
θ′
))

since Ly (P) is
globally identified in the parameter space 4 by theorem 1. Hence θ = θ′ since P (ζ (θ))

is 1-1 in this neighborhood. The second part follows immediately. Q.E.D.
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