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Abstract

In this paper we consider an overlapping generations model with endoge-
nous fertility and two-sided altruism and show the limitations of applying
commonly used open loop Nash equilibrium in characterizing equilibrium
transfers from parents to children in the form of bequest, and transfers from
children to parents as voluntary old-age support. Since in our model children
are concerned with parents’ old-age consumption, agents have incentives to
save less for old age and to have more children so as to strategically induce
their children to transfer more old-age support. We formulate such strategic
behavior within a sequential multi-stage game and use the notion of subgame
perfect equilibriumto study the consequences of such strategic manipulations
on private intergenerational transfers, fertility and savings decisions, and on
Pareto optimality of equilibrium allocation. We then examine the role of
social security to correct such strategic distortions.

Keywords: two-sided altruism, endogenous fertility, subgame perfect
manipulation of children, social security

1 Introduction

In standard pure exchange overlapping generations (OLG) economies agents have
life-cycle utility function. These models do not explain private intergenerational
transfers within family and have no bearings on the effects of public transfers poli-
cies such as social security on private intergenerational transfers, savings and fer-
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tility. Moreover, competitive equilibrium fails to be Pareto optimal; however, a
suitably designed pay-as-you-go (PAYG) social security program can remove in-
efficiencies by allowing transfers from children to parents that are necessary for
Pareto optimality but would not be possible iacgntralized compigive equilib-

rium due to lack of individual incentives for such transfers (see for instance, Bal-
asko and Shell [1981], Samuelson [1958]).

In another framework Becker [1974, 1981] establishes in his "Rotten Kid The-
orem” that under certain circumstances when parents care about their children’s
welfare, children take actions that maximize the joint family income eventhough
children do not care about their parents, provided parents leave positive bequest to
their children. One implication of his Rotten Kid Theorem is that a forced transfer
between children and parents have no ultimate effect on equilibrium outcome since
parents can off-set this forced intergenerational transfer by suitably adjusting their
bequest level. Barro [1974] uses the above kind of intergenerational altruism in
an OLG framework and shows that social security has no effect on savings so long
as in equilibrium agents leave positive bequest in all periods. Furthermore, since
Barro model is equivalent to one with finite number of infinitely lived agents, a
competitive equilibrium is Pareto optimal; hence social security is not required for
the purpose of attaining Pareto optimality of equilibrium allocation.

Both strands of above literature do not explain why transfers from children to
parents are observed in many economies, and why the amount of transfers declines
with the introduction of public transfer policies; why a PAYG social security pro-
gram exists, and whether it is possible for the current living generations to legislate
a PAYG social security benefits scheme for the current and all future generations
such that the future generations will have no incentives to amend it; and if one such
program exists does it lead to optimal allocation?

A few attempts have been made, however, to explain the existence of PAYG
social security programs in frameworks that treat fertility exogenously. One type
of explanations postulate that there could be economy of scale and other sources
of market failures in pension provision (see, Diamond [1977]) or there might be
adverse selection/moral hazard problems in private provision of retirement income
insurance and these could be mitigated by compulsory participation (see Diamond
and Mirrlees [1978]). These can explain introduction of fully funded system but
cannot explain the existence of PAYG system.

Among the other type of explanations, Browning [1975] considers a voting
model of social security in an OLG framework in which the old outvote the young

2See Bernheim, Shleifer and Summers [1985] foritiqere of the Rotten Kid Theorem.



to enact a PAYG social security system. It is not, however, clear in Browning’s
framework why then the old do not use their power to enact a legislation to extract
all income from the young. Hansson and Stuart [1989] provide an alternative ex-
planation by modelling PAYG social security legislation as a trade among living
generations. They consider an OLG model in which agents are assumed to derive
utility not only from their own young age and old-age consumption but also from
properly discounted young age and old-age consumption of their parents and of all
future generations. They find conditions such that the young and old agents unan-
imously agree upon a stream of PAYG social security transfers for the current and
all future generations such that the resulting allocation is Pareto optimal and that
no future generations have incentives to amend the program.

Veall [1986] provides an alternative explanation for PAYG program by consid-
ering an OLG model in which each agent is assumed to detiiity not only from
his/her own life-cycle consumption, but also from the level of old-age consumption
of his/her parents. Due to this consumption externality, elderly may save little to
extract the maximum possible gifts from their children; "This can lead to an infe-
rior steady state, where no one is consuming 'enough’ in retirement” (Veall [1986,
p.250). If a PAYG social security system is introduced such that it transfers from
the young to the old at least the amount that the old could extract from their chil-
dren by saving nothing, such a social security program could restore inter-temporal
efficiency of consumption for each agent and Pareto offityrfar the whole so-
ciety. However, once the agents begin to save, the young may like to reduce their
social security contribution and have incentive to amend the PAYG social security
legislation. Thus such a PAYG system may not be stable. Veall shows that if social
security benefits are set at the level of optimal steady-state old-age consumption,
then such a legislation will be honored by all future generations and thus is stable.
Moreover, the resulting allocation will be Pareto optimal.

If agents expect to receive gifts from their children to support old-age con-
sumption, it is clear that not only savings decisions but also the fertility decisions
will be affected; in fact, agents would like to have more childteempirical anal-
yses of cross country data as well as household survey data predominantly show
that social security affects both fertility level and savings rate (see for instance,
Nugent [1985] for a summary of these studies). Hence, it is important to relax the
exogenous fertility assumption in the above class of models.

In more recent models that study effects of social security ditifigand sav-
ings (Barro and Becker [1989] and Raut [1992]) the existence of social security
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is not explained. Nishimura and Zhang [1992] include fertility choices in Veall's
one-sided altruism framework. Following Veall, they view the optimal old-age
consumption in the steady-state as PAYG social security benefits. However, when
fertility is also a choice variable, it is not possible to implement the optimal steady-
state allocation using only a PAYG social security policy instrument; this was pos-
sible in Veall's framework because he treatediligy as exogenous; in fact, once
such a PAY G social security program is enacted, the free rider’s problem will crip-
ple the system since an individual agent will have no incentive to have children (as
they do not affect utility but cost money) and would like to depend on others’ chil-
dren to contribute to social security program. Since every body would do the same,
such a social security program is not individually rational. Therefore, viewing opti-
mal steady-state gifts as a form of PAYG social security in Veall's framework loses
both normative and positive virtues once fertility is a choice variable.

In this paper, we extend Veall's framework to rectify some of these problems.
We assume that agents derive utility not only from their own young age and old age
consumption, but also from old-age consumption of their parents and the young age
consumption of their children weighted by the number of children. This allows us
to endogenize within family transfers in both directions (i.e., from children to par-
ents as gifts and from parents to children as bequest); moreover, in our framework
even when parents do not receive any old-age support they have individual incen-
tives to have children.

In the overlapping generations framework decisions are made sequentially: in
any given period, decisions regarding fertility, savings and intergenerational trans-
fers of past generations and of the currently alive old generation that are made in
the past are known to the current decision makers. When agents make their de-
cisions they use all available information. Moreover, since agents know that their
actions are observed by their children and hence will affect their children’s deci-
sions, they will take into account the incentive effects of their decisions on their
children, and thus try to manipulate their children to get the best out of them. For
instance, if an agent saves more for his retirement, then his children will transfer
less income to the agent when he retires. Since the agent knows that his children
react that way to his savings decisions, he might find it strategically advantageous
to save little and have more children to extract higher transfers from his children.
Thus, itis more natural to formulate our problem in a multi-stage game framework
and apply the notion of subgame perfection to characterize the outcome of parents’
manipulations. Much of the previous literature in this area ignores the sequential
nature of the above overlapping decisions and apply the notion of open loop Nash
equilibrium to characterize equilibrium outcomes. In open loop Nash equilibrium,



agents take the actions of other agents as given but not their reactions and thus do
not take proper account of the incentives that they face. Open loop Natib-equ
rium makes sense only when agents must commit to entire time paths of decisions
without observing anyone else’s. In most models, open loop Nash equilibrium is
easier to compute and hence it is often used as a benchmark to compare with other
concepts of equilibrium.

In section 2, we set up our basic model and discuss the nature of coordination
problems that the agents face, and compute the open loop Naiibragum as a
benchmark for subgame perfect equilibrium. In section 3, we point out more for-
mally the limitations of applying the open loop Nash equilibrium in our framework
and reformulate the decision making of agents in a sequential multi-stage game in
extensive form framework. We compute a subgame perfect equilibrium and study
its properties and implications for social security. Section 4 concludes the paper.

2 Basic Framework

We use the basic framework in Raut [1991, 1992] and introduce two-sided altruism
to endogenize intergenerational transfers. Let us assume that time is discrete and
is denotedas =0, 1, 2, ....; each person lives for three periogsing, adult, and

old. While young he is dependent on his parents for all decisions. We follow the
convention that a superscript t refers to an adult of period t and a subs@ipts

to time periodt. For instance¢] andc¢],, denote respectively the adult age and
old-age consumption of an adult of period t; howevgrdenotes the number of
children of an adult of period t, since we assume that only adults can have children,
so from the subscript of; we can identify which generation it corresponds to.

We assume that for all> 0, the wage ratev, and the interest ratg_; which
are faced by the adults of generation t, are exogenously given.

2.1 Households

We assume that all children are born identical and they all behave identically in
a given situation. We would like to derive agent's behavior regarding fertility,
savings and intergenerational transfers from utility maximization. We model an
individual's concern for his parents and children by assuming that an adult of gen-
eration t derives utility from his own life-cycle consumption and from consumption
level of his children and parents that he observes during his active life-time (for a



justification of these type of utility functions, see Pollak [1988]). More specifically
we postulate the following utility function:

Wy = 8(ne—a)V(ei™") + aVv(c)) + BV( ciyr) + 1(ne)V(e, ) 1)

Veall [1986] in his exogenous fertility framework and Nishimura and Zhang [1992]
in their endogenous fertility framework assumed tf{at;) = 0 andé(n;) =constant,

for all ¢t > 0. When there are many siblings, an individual may not care about his
parents as intensely as he would do if he were the only child. In the above speci-
fication of utility function, we allow the degree of an individual's concern for his
parents to depend on the number of siblings. However, much of our results hold if
6(.) is constant.

In our economy, agents have interdependent utility functions: an agent’s utility
is affected by the amount of consumption of other family members. Thus, the
agents have incentives to transfer part of their income to their parents and children.
There are several difficulties in modelling the coordination of these interdependent
transfer decisions. The coordination problem that a representative adult of period
t,t > 1 faces s as follows:

An adult of period t earns wage income in the labor market andxpects
to receive a bequest from his parents. These two sources of income constitute
his budget during adulthood. Rearing cost per child in periodt is 0 units of
period t good. Given his adulthood budget, he decides the amount of sayjngs
the number of childrem; > 0, the fraction of income to be transferred to his old
parents:; > 0; in the next period, he retires and expects to recejyen; amount
of gifts from his children, earnd + ;4 )s; as return from his physical assets, and
decides the amount of bequést, > 0 to leave for each of his children. More-
over, agent t's t-th period decisions, n¢, s;) overlap with his parent’'s bequest
decision pb;; similarly, his bequest decisiob 1, overlaps with his children’s gift
decisionsg,;. The time structure of overlapping decisions is shown in table 1.

The effects of agents action,a’ = (a¢, ny, s¢, b;11), on the levels of his own
life cycle consumption and the levels of consumption of his parents and children
in the periods that overlap with his life-cycle, depend on his parent’s action,
and his children’s action’*! as follows:

Ci + St + Otnt = (1 — at)wt + bt (2)
C§+1 + by = (14 7q1)S¢ + @rprwipany (3)
Ci_l = (14 ry)sim1 — n—1by + agwing—q (4)
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Table 1: Time table of actions by overlapping generations of agents

time t=20 t=1 t=2 t=3 t—1 t
generation
-1 bo
0 (Clo, no, 50) bl
1 (a1,n1,51) ba
2 (Clz, no, 52) b3
t—1 (ar—1,M¢-1,81-1) by
it (Clt, N¢, St)
1
Ciy1 = (1 - at-l—l)wt-l—l + bt-l—l — St41 — 0t+1nt+1 (5)

t ot
e, Cipq 2 0

Let agent t's choice vectors be in the sgt,C R4, defined by

-

Similarly, the agent = 0’s utility function is given by
Wo = pv(e}) +7(no)v(ci)

and agent = 0 decides the level of bequést, given his past decisions, sg,
and his children’s decisions;. The arguments of his utility function are given by

(6)
(7)

ol = (ag,ng,5¢,bi41) € RL | cf, by, defined in equationg), (3)
are> 0 withb; = 0 anda;41 = 0

0 —
Cq + n0b1 =

1 _
Cl—

(14 7r1)s0 + aqwing
(I —ay)wy 4+ by — 51— 01y
>0

His set of choice vector$® C R, can be defined as

$° = {b1 > 0] (6) is satisfied withu; = 0, > 0}

Almost all previous studies applied a version oiogen-loop Nash equilibrium
concept, which is defined as the set of strategdie$,| o' € 5*,¢ > 0} such that
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for not¢ > 0, there exists @' € S* such that givem™, 7 # ¢, the consumption
vector fromé; yields higher utility for agent t than from’ (see Fudenberg and
Tirole [1991] for the concept of open-loop Nash equilibrium).

Note that ifl > «; > 0 andb; > 0 is an open loop Nash equilibrium combi-
nation of gifts and bequest in period t, saijs+ ¢ andb; + ewy, for smalle > 0;
this can lead to gift-bequest war or the tragedy of miscoordination as in the gift of
magi? This could be handled by restricting to open loop Nash equilibria that yield
either positive bequest or positive gift within a period but not both.

Another problem with the open-loop Nash-equilibrium is that given open loop
Nash equilibrium levels of gifts from his children and bequest from his parents
while there may not exist a feasible strateégyin S yielding higher utility for any
agent t,t > 0, there may exist'’ outsideS’ that satisfies the budget constraints
(2)-(5) [or (6)-(7) fort = 0] yielding higher utility for agent t, for some> 0.

These are not very serious problems and could be avoided by restricting the
open-loop Nash equilibrium as follows:
For givenb;_1,8;_1,m¢_1, G111, Si+1, andn;y 1, @ VECtor fu, sy, byy1, ag, i,
i1 ¢t ¢fT1) > 0 is feasible from the perspective of agent 1 if it satisfies
the budget constraints (2)-(5) of the above maximization problem. For giyen
no, a1, $1, andny, avector §;, ¢, ¢1) > 0 is feasible from the perspective of agent
t = 0 if it satisfies the constraints (6)-(7).

Definition 2.1 An open loop Nash equilibriuris a sequencé(ay, b;, s;, ny, cl,
cti1)}24, ¢ such that for given initial conditiomq, so,

(l) a;>0=b,=0andb; >0=a; =0

(i) fort > 1,givena’=! = (a;_1,n_1, $1—1, b;) anda’*! = (ayq1, ne1, Seq1, bita)
there does not exists a feasible choice vetior 3;, by, d, ¢, &, q, &7,
&11) from agent t's perspective that yields higher utility for him. Similarly,
for ¢ = 0, and givenng, so, and givena! = (ay,n,s;) € 5! there does
not exist another feasible choice vectdr,, &, ¢! from the perspective of

agentt = 0 that yields higher utility for him.

* Although in O’Henry’s story both parties were made worse-off because of the gift exchange, in
our model, while there is mis-coordination of the gift and bequest decisions of the agents within a
period, there is, however, no welfare loss due to such miscoordination of decisions.

The latter does not applyif= 0



There is, however, a serious deficiency in the open loop Nash equilibrium as
an adequate characterization of the incentives that the agents face in our set-up.

An open loop Nash equilibrium assumes teath agent takes the actions of
other agents as given. At an equilibrium, there might be scope for agents to manip-
ulate their parents’ or their children’s behavior to extract more transfers from them.
For instance, since parents make their consumption and fertility decisions prior to
their children’s, parents may find it strategically advantageous to consume more in
their working age, save little on physical assets and possibly have more children so
that when they become old they have little income of their own. When the children
find that their old parents have little to consume, they will have sympathy for their
parents since they care about their parents’ consumption; thus they will transfer a
larger amount of old-age support than what they would be transferring in the open
loop Nash equilibrium. The children in turn can manipulate their children in the
same way and be better-off as a result. This process might be self-fulfilling over
time.

We model such manipulations in a later section by reformulating the above
coordination problem as a multi-stage game in extensive form and use subgame
perfect Nash equilibrium as the equilibrium outcome of manipulation. In the rest
of this section, we compute open loop Nash equilibria as benchmarks with which
the subgame perfect Nash equilibria of the multi-stage game are confpared.

2.2 Characterization of Open Loop Equilibria

Assume that an open loop Nash equilibrium exists and that the instantaneous util-
ity function, v(c), satisfies Inada condition so that unrestricted maximizatioy of

with respect tar andc¢], always yields positive consumption. The equilibrium
will satisfy the following first order necessary conditions of the parents’ optimiza-
tion problems:

Corresponding to agent= 0's optimization problem we have
—BnoV' () +y(no)V(ci) <0and = 0if by > 0 (8)
corresponding to any other ageist(¢ > 1 )optimization problem:

d(ne_1 V' (" Hwmi_y — aV/(chwy < 0and= 0if a; > 0 9)

Several other equilibrium concepts have be@ppsed in théiterature in this situation, see Raut
[1990a] for the concept of Lindahl edjbrium, and Pollak 1988] for other concepts. However all
these concepts are in models with exogenousifer
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—aV'(¢p) + BV (¢4 (1 + 1e41) < Oand=0if s, > 0 (10)

—OéV/(Ci)Ot —|—ﬁV/(C§+1)(at+1wt+1 — bt+1) —|—’)//(nt)V(C§i%) S 0, and: 0 if ng > 0
(11)
—BV (e} ) + (V' (ef7) < 0and=0if by > 0 (12)

At t = 1, eithera; > 0, in which case (9) is an equality (at= 1) from which

we calculater; and then check if the inequality (8) is satisfied;ter > 0, in

which case (8) is an equality from which we calculajeand then check if the
inequality (9) is satisfied. There are situations when neither of the above is true,
and hence there may not exist an open loop equilibrium. For instance, suppose
parents care too much about their children’s adult-age consumption as compared
to their own old-age consumption and children care too much about their parent’s
old-age consumption as compared to their own adult-age consumption. Or in other
words, suppose andg in (1) are close to zero, then parents would like to transfer
their income to their children but children would not accept it, on the other hand,
children would like to give a gift to their parents but parents would not accept it.

We further distinguish among different types of equilibrfn open-loop be-
quest equilibriunms an equilibrium of the above type that satisfigs= 0, and
b, > 0 forallt > 1. An open-loop gift equilibriunts an equilibrium of the above
type that further satisfidgs = 0, anda; > 0 for all ¢ > 1. Similary, anopen-loop
equilibrium with no transfergs one in whichb; = a; = 0 for allt > 0. There
could be also equilibria in which bequests are operative in some periods and gifts
are operative in other periods. In this paper we will analyze only open-loop gift
equilibria. It could be shown from the above first order conditions that in gen-
eral there is indeterminacy in the set of open loop equilibria. This indeterminacy
is symptomatic of Nash equilibria with interdependent utility functions. For our
purpose, we focus on steady-state open loop gift equilibria which are determinate.

2.3 Steady-state Open Loop Gift Equilibria

A steady-state open loop gift equilibritimman open loop gift equilibrium such that
a; = a* > 0,n; = n* > 0,8 = s >0andb; = 0 forall tand (8)- (12) are
satisfied.

We denote all steady-state endogenous variables withaad drop the time
scripts. We assume that, = w*, r, = r* andé; = 6 forallt+ > 1. Since
this stationarity assumption is not critical to the issues of the paper, to simplify
exposition, we will maintain this assumption in the rest of the paper. Let us denote
by ¢} andc; respectively the adult age and old-age consumption in the steady-state.

10



Thus, for a steady-state gift equilibrium, we haye= (1 — o*)w* — dn* — s* and
c5 = (14 r*)s* + w*a*n*. The first order necessary conditions, (9)-(12), for such
an equilibrium simplify to

Vi(e;)  «
Vier) ~ S )
v(ie]) « _ Barw”
vi(er) ~ 7(n) [0 6(n*)n*] (14)
Vi(e3) _ v(n7)
vic) = o (19
P ? n;)n*,(equality ifs > 0) (16)

The following proposition summarizes the properties of open loop gift equilib-
ria.

Proposition 1 Leté(n)n be increasing in n. Letng, af, U;) be the vector of fer-
tility, gifts and utility levels corresponding to a steady-state gift equilibrium with
s* =0and(n;,a’,U) be the corresponding vector for a steady-state gifilduu

rium with s* > 0, thennj > »%, andUj > U7, the latter being a strict inequality
when the no-bequest constraint (15) is a strict inequality.

PROOF: From (16) we have for a steady-state gift equilibrium with= 0,
é(ny)ng/B > 1+ r* and for a steady-state gift equilibrium with > 0, we have
é(ni)n;/B = 1+ r*. Combining these two, we havénj)ng > é(nl)n}, ie.,
ny > ni.

The proof of the second part follows from proposition 4 in the next section.

Q.E.D.

In the following example we show the coexistence of unique steady-state open
loop gift equilibria of two types: one type witkc = 0 and the other type with
s* > 0.

2.4 An Example

The instantaneous utility function satisfies the following:

11



Assumption A: 2.1 (constant elasticity of marginal utility (CEM) function)

V(c):l_p,p7£1,0<p<oo a7

where—p measures the elasticity of marginal utility.
Assumption A: 2.2 y(n) = yon! ™, 0 < 9y < 1

The significance of this assumption is that parents care about consumption of all
children equally. However, the weights they give to such consumption decrease
with the number of children whenevey > 0.

Assumption A: 2.3 §(n) = éen®1 71, 0 < 6 < 1

Two types of steady-state gift equilibria may coexist. Let us first find steady-
state gift equilibria withs* > 0. Equation (16) determines the steady-state equi-
librium »% uniquely and equations (13) and (14) reduce to the following two linear
equations:

p(w™ = On7) — w (0} + pr)a

_ 18

i 1+7*4+pu (18)

o= (L=pjabungm (14 r7)50(1 = yn)w nit ™ 4 (1 - p)aw*u‘nzma
(T4 7*)70(1 —71) (1+7%)270(1 — 71)

(19)

wherep = (3(1 + r=)/a)/’.

The linear equations (18) and (19) for the above set of parameter values are
shown respectively as («) ands,(«a) in figure 1.

Notice that the intercept of equation (18) is always positive since the child cost,
fn’ is less than wage income in gift equilibrium. The intercept of equation (19)
is positive if p < 1, in which case the slopes are negative for both lines and we
cannot guarantee that they will intersect in the positive orthant. Howeyes; if,
equation (19) will have negative intercept and positive slope iff sufficiently
larger than one, then it will intersect with the line (18), and we have unique steady-
state gift equilibrium:ég = .35;6y = .8; 70 = .3, v1 = .6; p = 1.5, a= 4,

4 = .34;r* = .05;w* = 10; andd = .1. The equilibrium quantities are as follows:
(nk,s*,a*) = (1.025,1.341,.334) and(c}, ¢35, Upnaz) = (5.214,4.833, —1.24);
one can easily verify that (15) is satisfied with strict inequality.

Let us now examine how many steady-state gift equilibria exist whiea 0,
and whether for the above set of parameters, such an equilibrium could be found.

12



Determination of open loop steady-state gift equilibrium
10

(a9 =(.3341, 1.341)

05 5@

Figure 1: Determination of steady-state gift equilibrium

It can be shown easily that (13) and (14) simplify to the following two equations in
two unknownsg andn:

(1 —a)w™—60n= [6(7;)71] v aw™n (20)
(1 —a)w™—60n= % [0 — ?&;Z] (21)

Equilibrium «j; andn is a solution of (20) and (21) that also satisfies (15)
and (16). From the above implicit equations, it is not difficult to ge#xplic-
itly as a function of n, and let these functions be denoted,és) andaz(n) re-
spectively. The graphs of these two functions are shown in figure 2; it is clear
that there exists only one solution™, s*, ¢*) = (1.6997,0,.4096) ¢}, ¢35, U*) =
(5.734,6.961,—1.1402); moreover (15) and (16) are satisfied as strict inequalities.

Comparing these two open-loop gift equilibria we find that the equilibrium
with zero savings has higher levels of fertility, transfers from children and utility
level than the gift equilibrium with positive savings. This shows that agents have
incentive to manipulate their children. In the next section we model manipulation
of children formally and compare its equilibrium outcome with the open loop gift
equilibrium outcomes.
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T Determination of zero-savings gift
equilibrium
as(n)
ay(n)
—ne 18

Figure 2: Determination of steady-state gift equilibrium

3 Manipulation and Subgame Perfection

From the time table of actions of various generations it is clear that a representative
adult of period t has already made his decisionsy, n;—1, s;—1 ) which together

with the decisions of all past generations are observable to himself and to his chil-
dren. In period t, a representative agent t-1 declgeand a representative agent

t decides(a,, ny, s¢) both simultaneously; optimal decisions of the agents in pe-
riod t depend on the information they already have; since agent t-1 knows that his
children will use the information regarding his observable actions of the previous
period, he will choose his action that exploits the reactions of his children in the
most favorable way. Or in other words, parents may find it beneficial to manipulate
their children’s behavior. To analyze these issues, it is natural to use the frame-
work of multi stage game with observed actions and the notion of subgame perfect
equilibrium as described below.

We associate stage t with time period t. We are currently attisné when we
are analyzing the economy. Liet denote the common information or history of all
the actions that have been taken by all agents up to times.defined recursively

14



as follows:

hy
hz = (h1|(b17a17n1781))

(bo, ag, no, so) (initial condition)

he = (heo1|(bim1, @i, M1, 8¢-1)), Yt > 2

Let us denote by, the set of all possible histories up to time t. 198t (h;) C R,
be the set of feasible bequest decisions of agent t-1 (denoted as superscript t-1) at
stage t (denoted as subscript t) defined by

$i71 (k) = {b, > 0| (4) is satisfied with:{~! > 0, s,_1,n,_sconsistent with, }

Note that the above set of feasible bequest decisions depend on the history
especially on the agent’s own savings and fertility decisions. At stage t, agent t-1's
actions are functions of the forig : H; — R, such thab,(h;) € S (hy).

Similarly, given the history:;, S{(h;) C R2., the set of feasible actions of an
adult agent in stage t, is defined by

Stthe) = {(ar,me,51) € B} | (2) s satisfied withh; = 0, ¢} > 0}

At stage t, agent t's actions are functioris,, n;,s;) : H; — R such that
(at, e, s¢)(he) € SE(he). Once agents t and t-1 choose their actions in period

t, the history gets updated fg;, and the game moves to stage 1 in which

agents t and + 1 are active and their feasible actions are defined exactly in the
same fashion as in the previous stage. Let us denote the game starting at stage t
with historyh, asI'(h;). Figure 3 depicts a part of the extensive form of the game
I'(h¢): the tree is shown only up to stage- 2; the label of a branch describes the
action of the agent that it corresponds to; the shaded boxes are the information sets
of the agents within a given stage. In this notation, the economy we are analyzing
is represented by the gariéh ).

A Pure strategyf agent tis a vector

((at, n¢, St)(ht), bt+1(ht+1)) € S;(ht) X S§+1(ht+1) such that

oy = hi € Hey higr = (Rl (s, ag, ey 5¢)(he)) ift>1
b1(bo, ag, 10, 50) ift=20
(22)

A strategy profile of the gamé& /2, ) is a set of pure strategies of all the players,
o = {o0}:2,. For any history:, up to stage t and for any > ¢, define.(h,) as
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b, by agent t-1

%)
(a,n,s) by agent t

h
t+1 o 1 h 1

bt+1 by agent t

(3t+1,nt+1,3t+1)
+ by agent t+1

A

Figure 3: Extensive form representation of the multi-stage gaitig)
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the set of all possible histories up to stagstarting from the common history,

at stage t. Given a history; up to stage t { > 0), and corresponding to a strategy
profilec = {0} as in (22), we define a strategy profitéh,) = {o-(he) 52,4

for the subgamé'( ;) by

((r.n7080)(hr).brga(hrgn)) € ST(h) X ST41(hrgr) SUCh

or(ht) = thath, € H.(h¢) andh. 1 = (h:|(br,ar,n7,5:)(h:)) if >t
bi(hy) for playert — 1
(23)

In the above notations, (ko) = o, for all 7 > 0. Note that{o(h;)}2Z, is a well
defined profile of strategies for the gaiig:;).

Definition 3.1 A subgame perfect equilibriustarting at an initial conditiorb,
ag, ng andsg is a profile of strategie$o, }~ defined in (22) such thdt . (h;)} 22,
defined in (23) is a Nash equilibrium of the gaifé,) for all h; € H,, ¢t > 0.

In the above set-up, agents in later stages can use very complex punishment
rules as their strategies. For instance, an agent> in stage 5 can condition his
actions as follows: "he will transfer a certain fractiog of his income to his his
parents if his parents transferred a certain fractipaf their income to the agent’s
grandparents, saved certain amosgythad certain number of children,, and if
his grand parents transferred a certain fractigrof their income to the agent’s
grand grand parents, ... so on.” While these types of strategies may lead to many
subgame perfect equilibria, the equilibria that prescribe strategies conditioning on
the dead grand parents are hard to execute since it is not possible to objectively
verify if the agent’s grand parents or grand grand parents did such and such things.

Using the Markovian structure of our economy, and the fact that utility func-
tions depend only on parent’s old-age and the children’s young age consumption,
we can take as focal point a subgame perfect equilibrium that conditions only
on the actions that are observable within an agent’s life time. More specifically,
note thatS?(h;) does not depend upon histay and 5}~ (h;) depends only on
agent t-1's own past decisions. From equations (2)-(5), and the arguments of the
utility function, it is clear that the only information from history that is relevant
to decision making of the agents in stage t are agent t-1's own past decisions
(a¢—1,s:-1,n¢-1) in making his bequest decisiop, and(s;_1,n;—1) in making
agent t's decisiongu, n¢, s;). Thus the agent t's strategies are functions of the
type: a; = ay(ni—1,S¢-1), ne = ny(ny—1,5i-1), ands; = s;(n4_1, s,—1) which
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are known aseaction functionsUtilizing the envelop theorem, we note that when
agenttjointly determines (., .), n:(.,.), s¢(., .), of stage tand: (., ., .) of stage

t+1, he can treal; 1, as scalar. Putting all the actions aedctions of agent t from

all stages of the game together, his strategy is now given by an infinite dimensional
vector in function space as follows:

./4 - (at(., .),nt(., .),St(., -)7bt-|—1) if ¢ Z 1
t bl (ao,no,SO) if t = 0

Note thata,, s;, andn; now belong to function spaces, whereas in open loop Nash
equilibrium they were non-negative real numbers. Also note that in our context the
subgame starting &t /, ) depends only on the componens, 1, a;—1, 71, S¢—1)

of the history; we will denote this subgame@iéb;_1, a;—1, 71, s.—1) instead of
I'(h¢). The following proposition can be proved easily.

Proposition 2 Let the initial condition be given by, ag, no andsy. Let the se-
guence of strategied; = (af(nt_l,st_l),sf(nt_l,st_l),nf(nt_l,st_l),bf_l_l),
t > 1, and Af = (ao, no, s0,b) be such thaf Ay, | }° is a Nash equilibrium
of the game~ (b,_,, a,_q,n;_q,5:-1), forallt > 1. Then{A;};" is a subgame
perfect equilibrium.

The difference between a subgame perfect Nash equilibrium and an open loop
Nash equilibrium is that in the latter, agent t takes his children’s gjits and par-
ent's bequest decisidn as given, whereas in a subgame perfect Nash equilibrium,
he takes his parent’s bequest decisiemnd the reaction functions of his children,
ar+1(ny, $¢), neg1(ng, s¢) andsey1(ng, s¢) as given when he decides on the number
of children,n;, and the amount of savings,.

Similar to the case of open loop Nash equilibrium, we can define subgame
perfect gift equilibrium and subgame perfect bequest equilibrium. However, in
the rest of the paper we analyze only the properties of the subgame perfect gift
equilibria.

3.1 Conditions characterizing subgame perfect gift equilibria
Letasi(.,.), nita(..), se+1(.,.) be the optimal reaction functions of agent 1,

and letn;_4, s;_1 be any feasible actions of agent 1. Taking these decisions as
given, agentt chooses a feasible= (a.(.,.), s:(.,.), n4(-, ), bi+1) that maximizes
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his utility. Fort > 1, the first order necessary conditions for his maximization
problem are as follows:

—aV'(¢f) 4 BV (ci4 ) [(1 4 regr) + wigangig o (g, 80)] — V(Ht)V/(CfsE) X

[at+172(nt, st)wH_l + SH_LQ(nt, St) + 0t+1nt+172(nt, St)] < 0and = 0 if Sy > 0 (24)

—abV'(c}) + BV (¢l 1) [arg1 (e, s)wigr + newipr a1 (ng, 5] + 7 (ne)V(ciED)

—y(ne V' (ef21) [wegrae1,1(nes $¢) + Se41,0(ne, 5¢) + Opgprnigr1(ng, s)] = 0(25)
6(”25—1) nt_lvl([l + Tt)st—l + atwtnt_l]) — OéV/([(l — at)wt — S — tht]) =0
(26)
— BV (i )ne + ¥ (nV'(1]) < 0and= 0if byyq > 0 (27)

Could we use the above conditions to determine subgame perfect equilibrium
choices of the agents? If we knew the explicit formaef,(.,.), ns41(.,.) and
si+1(., -) then equations (24) - (26) provide a system of implicit functi®0s; 1, s;—1, as, ny, 5¢) =
0, where® is a three dimensional vector of functions. Assuming suitable condi-
tions (such as v is twice continuously differentiable etc.), we could get differen-
tiable solutionsu(n¢—1,s:-1), ne(ni—1, Si—1), Se(ne—1,8-1) andbyyq = 0. If
furthermore,a;41(.), ne41(.) and sqy1(.) are chosen such that for at_, and
s;—1 the solution of®(.) = 0 is a global maximum of agent t’s utility maximiza-
tion problem, then yes we could use these equations to determine subgame perfect
equilibrium. However, we do not know the form of the functions as assumed and
thus we cannot use the system of equations (24)-(26) to find the optimal reaction
functions iteratively in the above way. We can, however, use the above system of
equations to find steady-state subgame perfect gift equilibria as follows:

A steady-state subgame perfect gift equilibrismavectofn*, s*, a(., .), n(.,.), s(.,.))
such that

at(nt—lvst—l) = a(nt—lvst—l)

nt(nt—lvst—l) = n(nt—lvst—l)
St(nt—lvst—l) = 8(7%—17815—1)
b, = 0 forallt>1
and
n* =n(n",s"), s° = s(n*,s")



and that the above satisfies the system of equations (24)-(26) forzall with
initial condition,ng = n*, andsg = s*.

There may exist many steady-state subgame perfect gift equilibria. To use the
above considions to find some equilibria let us assumerihat 1, s¢_1) = n4_1
ands(n¢_1,s;-1) = s;—1. Note that for such reaction functions, we haye= 1,
ny = 0, sy = 0andsy, = 1. Let¢] andc¢l be the steady-state subgame perfect
equilibrium consumption during adult age and old-age of an agent. The system of
equations (24)-(26) for a steady-state subgame perfect equilibrium becomes:

—aV'(e]) + BV(e3) [(1 + 1) + wnaz(n, s)] = y(n)V(c]) x
[az(n, s)w + 1] < 0and=0ifs > 0 (28)

—afV'(c) + BV'(c3) [a(n, s)w + ar(n, s)wn] + 5 (n)V(c])

—y()V(e})[ar(n, s)w + 6] = 0 (29)
o(m)n V' ([1 —a(.)]w—s—0n))
a V(14 7)s+al)wn) (30)

The above system is augmented by the no bequest condition (15). We then
solve fora(.,.) from equation (30) and thesi and»* from equations (28)-(29)
after plugging the values af(.), a1(.) andas(.), and then check if the solution is
a local maximum and unique.

We can find an alternative solution by assuming that n(.,.) and s(.,.) are constant
functions and then the system of equations that will produce this kind of steady-
state subgame perfect gift equilibriuam is exactly the same as (28)-(30) with the
exception tha# in the last bracketed term of (28) and 1 in the last bracketed term
of (29) are omitted. We will see that that both types of steady-state subgame perfect
gift equilibria exist with an example later.

In the rest of the paper, we study the properties of such steady-state subgame
perfect gift equilibria.

Proposition 3 Let v(.) be twice continuously differentiable witf{&) < 0V ¢ > 0,
then for all (n,s) that lead to positive consumption in each period, equation (30)
has a continuously differentiable solutiafv:, s) andda(n, s)/ds < 0.
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PROOF: For the implicit functio®(n, s, a) = 0 in (30), we have

a9(.)
da

Hence the first part follows from the implicit function theorem. Using the implicit
function theorem again, we have

da(n,s) V(7)) + (14 rWV'(c5)6(n)n/a

0s wiV(e}) + V(c3)8(m)n? ol

= —wW[V’(c;) +V'(c3)6(n)n?/a] > 0

Q.E.D.

While the effect of parents savings is negative on the transfers from children,
the correpsonding effect of number of children could be ambiguous. To show this,
let us denote byA(n) = é(n).n and assume thak(n) is an increasing function
of n. Proceeding in the same manner as in the proof of above ptiopesve can
derive that

da(.,.)  A(n)v'(c3) +[A(n)a(., Jwr"(c5) + 0av”(c})]

on [wav”(e7) + A(n)wno(c})]

Note that the bracketted terms in the above are negative and the first term of the
numerator is positive. Thus sign of the right hand side of the above partial derive

will depend on the relative magnitudes of the bracketted term and the first term on
the numerator. In the example that we will consider later, the right hand side is

unambiguously negative.

A steady-state open loop gift equilibriummnsanipulation proofif agents do
not have incentive to manipulate their children in order to extract more transfers
from them.

Proposition 4 Suppose a steady-state open loop gift equilibrium resultsin positive
savings and strict inequality of the no bequest constraint (15), then the equilibrium
is not manipulation proof and hence not Pareto Optimal.

PROOF: Consider a steady-state open loop gift equilibrignt, s*, «*). Given

the Inada condition on(n) we know that:* > 0. Lets* > 0 and (15) be a strict
inequality. Supposen®, s*, a*) is manipulation proof. Then it is also a subgame
perfect equilibrium of the second type satisfying (28)[without 1 in the last braketed
term] as an equality, and thus we have
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[—av'(e]) + V()1 + )] + w.as(n, ) {V(c5)n — y(n)V(c])} = 0 (31)

Since(n*, s*, a*) and the associateq andc; are open loop gift equilibrium, the
first term under the square bracket in equation (31) is zero [cf. equation (16)]. By
proposition 3, we haves(.,.) < 0. This implies that the term under the curly
bracket in (31) is zero. But this contradicts the assumption that (15) is a strict
inequality. This establishes the first part of the proposition.

Since agents are strictly better-off in the subgame perfect equilibrium, the open
loop gift equilibrium of the proposition is not Pareto optimal.

Q.E.D.

It might seem that since steady-state subgame perfect equilibria with operative
gifts are manipulation proof they are all Pareto optimal. This is not necessarily true
as shown in the following proposition.

Proposition 5 Consider an economy that has a steady-state subgame perfect gift
equilibrium(s*, n*, a*(.,.)) with s* = 0 and no bequest constraint, (15), holds as
a strict inequality, and suppose further that the equilibrium satisfies:

B - (7(71*)) . (VI(CT)) =pu > 0andé(n*) < p

n* V(c3)

then all agents can be made better-off with a suitably designed pay-as-you-go so-
cial security program. Hence such an equilibriumis not Pareto optimal.

PROOF: Consider a pay-as-you-go social security program which marginally taxes
all adult agents and redistributes the revenues equally among their old parents. Sup-
pose for the moment that agents do not change their fertility and savings decisions
in response to introduction of such a social security program. The utility gains of
arepresentative agenti$3v/'(¢5) from the increased consumption in the old-age.
The utility loss is given byw'(c7) + v(n)V/(¢}), where the first term corresponds

to welfare loss due to fall in own adult-age consumption and the second term cor-
responds to the welfare loss due to reduction in children’s adult-age consumption.
Thus the net gain is

AU = wpv(es) — av/(ef) = y(n V(i)
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= pV(e5) —o(n )V (e3) =y (n")V'(c])
= 0" (BV(e3) =y ("W (7)) = 6(n")n"V(ch)
> 0

In deriving the above we have used equation (30) and the fact that equation (15) is
a strict inequality by assumption.

Itis clear that if the agents optimally adjust their fertility and savings decisions,
the gains in utility will be even higher.

Q.E.D.

Social security not only can improve Pareto efficiency of a steady-state open
loop gift equilibrium that is not manipulation proof, it can also improve Pareto
efficiency of a steady-state locally subgame perfect gift equilibrium provided no
bequest condition is a strict inequality. If the no-bequest condition is an equality,
introduction of social security cannot improve Pareto efficiency.

3.2 The Example Continued

Let the utility function be a CEM function as in (17). For this utility function, we
have the following explicit solution a(n,s) of equation (30):

(60/a) Pnrle (v —[s 4 On]) — (1 + 1)s
afn, s) = w (n + (60/ )t/ Pndr/e) (32)

One can easily verify that both (.) anda,(.) are negative for this reaction func-
tion. We have shown that for this economy, and that each type of steady-state
subgame perfect gift equilibrium exists. We will sketch the procedure to find the
second type of steady-state subgame perfect gift equilibrium.

To determine the steady-state subgame perfect gift equilibrium, we know from
proposition 4 that = 0. The subgame perfect equilibrium number of children
can be found from equation (29) when we substitute 0, using the above func-
tional forms. Let us denote the resulting equation as h(n). The form h(n) is very
complicated and we do not know its shape in general. We take the same parameter
values as in example 2. The determination of n is shown in figlir&l2e subgame

"We have restricted the figure to a small neighborhood around thikbeigun, in which the curve
looks linear.
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Determination of steady-state subgame perfect gift equilibrium
0.01

0.008 h(n)

(n, h(n)) = (1592, 0.000)
0.006
0.004 /
0.002

-0.002

-0.004

-0.006

-0.008

-0.01
15 17

Figure 4: Determination of steady-state subgame gift perfect equilibrium

perfect gift equilibrium quantities are as followst, s, a) = (1.592,0,.417) and
(¢f, 5, Upaz) = (5.668,6.645, —1.15).

We also computed the first type of steady-state subgame perfect gift equilib-
rium as follows:(n, s, a) = (1.51531,0, .4232)and(c}, €3, Upnaz) = (5.616,6.413, —1.16).

3.3 PAYG Social Security

It is clear from propositions 3 and 4 that parents do have incentives to manipulate
their children by consuming more in adult age, and saving nothing on physical
assets and having more children to depend on for old-age support. By this manipu-
lation they could receive a higher percentage of their children’s income transferred
to them, and assuming that their children will manipulate their children in the same
way, everybody is made better-off in the subgame perfect equilibrium. If a pay-as-
you-go social security program is introduced effecting the subgame perfect equilib-
rium transfers from children to parents, agents do not have incentive to manipulate
their children’s behavior to obtain this transfer and thus would save more on phys-
ical capital and have less children as a result of a publicly funded social security
program. This predicted effect of the introduction of a social security is consistent
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with the stylized facts of many countries as reported in Nugent [1985].

The motive for social security in our view is to overcome the incentives to
throw oneself to the mercy of the younger generation in old-age. Our view of
social security is different from the social insurance view put forward by Diamond-
Mirrlees [1978] and others. The purpose of social security is clearly more to force
people to save for their retirement since we all know that we would not be able to
let the elderly live miserably if they do not save for their retirement. Our view of
social security is close to the social conscience view except that in our context the
social conscience is extended to the family members only.

In our model, similarly to Veall [1986], social security benefits and taxes are
endogenously determined. As in the Hansson and Stuart model, a social security
tax-benefits stream for the current as well as all future generations thatis implied by
the subgame perfect gift equilibrium could be legislated by the living generations
in periodt = 1 and no future generations will have incentives to change it.

As such to attain the subgame perfect gift equilibrium allocation of proposi-
tion 2, it is not necessary to introduce a social security program. It is clear, how-
ever, from proposition 5 that if the no-bequest constraint is a strict inequality, such
a subgame perfect equilibrium need not be Pareto optimal; Pareto optimality re-
quires higher transfers from children to parents, and an appropriate PAYG social
security program can serve such a social purpose.

4 Conclusion

In this paper we have considered a pure exchange overlapping generations model
with two-sided limited altruism in the sense that agents care not only about their
own life-cycle consumption, but they also care about their parents’ old-age con-
sumption and their children’s adult-age consumption. In our economy agents de-
cide their levels of fertility, savings, and transfers to parents and children. We
compute open loop Nash equilibria as widely done in the literature. For a class
of economies, we find that there are two steady-state open loop gift equilibria,
one with positive savings and the other with zero savings; both equilibria coexist;
moreover, the equilibrium with zero savings has higher fertility and utility lev-
els of a representative agent in the steady-state. We then argue that an open loop
Nash equilibrium ignores the sequential nature of the overlapping decision making
of various generations and thus do not characterize the incentives that individuals
face in their decisions.
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A more appropriate framework is a sequential multi-stage game in extensive
form, in which the notion of subgame perfect equilibrium is used to represent the
equilibrium outcome of manipulation by parents. For the above class of economies,
the steady-state subgame perfect equilibrium savings is always zero, and fertility
and welfare levels are higher than in the open loop steady-state gift equilibrium
with positive savings. We then argue that a PAYG social security program that sets
benefits at the subgame perfect equilibrium levels of transfers can be legislated
by the current living generations and no future generations will have incentives to
amend it. However, if the no bequest constraint is a strict inequality, such a PAYG
system does not lead to Pareto optimal allocations; Pareto optimality would require
higher transfers from children to parents, and an appropriate PAYG social security
program can serve such a social purpose.
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