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ENDOGENOUS FERTILITY, TECHNICAL CHANGE AND GROWTH IN A 

MODEL OF OVERLAPPING GENERATIONS 

Abstract 

The consequences of private reproduction and capital (physical and human) 
accumulation decisions to long-run economic development have been the focus 9f 
recent research. The earlier literature on the rate of growth of population, ". 

labour force and human capital were assumed to be exogenous. The recent 
literature, in contrast, explicitly recognizes their endogeneity. In 
addition, greater emphasis is placed on human as contrasted with physical 
capital in the growth process. 

Another strand of recent literature, labeled as "new" growth theory, is 
based on a misleading characterization of traditional neoclassical growth 
theory, namely, that it shows the steady state growth rate of income to be 
exogenous, and will equal the rate of growth of the labour force in the 
absence of exogenous technical change. Thus in the steady state per worker 
output and consumption are constant. A goal of 'new' theory is essentially to 
endogenize growth and to obtain sustained growth in per worker output and 
consumption, primarily by generating increasing scale economies in aggregate 
production. The resulting nonconvexities lead to multiple equilbria and 
hysteresis in some models. 

The perceived problems with the neo-classical growth model are not 
inherent features of the model, but the consequences of assuming that the 
marginal product of capital diminishes to zero as the input of capital is 
increased indefinitely relative to labour. Instead of directly relaxing this 
assumption, the 'new' growth theorists in effect introduce a factor other than 
physical capital which is not subject to such inexorable diminishing returns. 
We take a different approach: we assume fertility and savings to be endogenous 
so that the rate of growth, labour and capital, and hence aggregate growth, to 
be endogenous. Second, we assume that population density has an external 
effect (not perceived by individual agents) on the production process either 
through negative congestion effect or through positive effect in stimulating 
innovation and technical change, so that the change in production 
possibilities is endogenous determined by fertility decisions of individual 
agents. Our model is not necessarily geared to generating balanced growth 
steady states and its non -linear dynamics generate a plethora of outcomes that 
include not only the steady state of the neo-classical model, but also growth 
paths not only without a steady state but are even chaotic. Per capita output 
grows exponentially (and super exponentially) in some of the examples. 

KEY WORDS: Fertility, Technical Change, Growth 
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1. Introduction 

The consequences of private reproduction and capital (physical and human) 

accumulation decisions to long-run economic development have been the focus of 

research of a number of scholars in recent years (National Research Council 

(1986) , Nerlove et al (1987) , Raut (1985, 199la, 199lb) , and Simon (1977, 

1981) ) .  In the earlier literature on growth and development household 

formation, schooling, fertility and labour force participation decisions of 

households, their mortality experience and the resulting rate of population 

and labour force growth were assumed to be exogenous. The recent literature, 

in contrast, explicitly recognizes their endogeneity. In addition, greater 

emphasis is placed on human as contrasted with physical capital in the growth 

process. 

The starting point of another strand of recent literature, labeled as 

"new" growth theory, is a misleading characterization of traditional 

neoclassical growth theory, namely, that it shows the steady state growth rate 

of income to be exogenous, and, in the absence of (exogenous) technical change 

(of a Harrod-Neutral type) , this growth rate of income will equal the rate of 

growth of the labour force. Thus in the steady state per worker output.and 

consumption are constant. A goal of 'new' theory is essentially to endogenize 

growth and to obtain sustained growth in per worker output and consumption, 
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primarily by generating increasing scale economies in aggregate production. 

The resulting nonconvexities lead to multiple equilbria and hysteresis in some 

models. 

It should be emphasized that per capita output can grow indefinitely even 

in traditional growth models if the marginal product of capital is bounded 

away from zero as the capital-labour ratio grows indefinitely. Thus the 

neoclassical assumption that the marginal product of capital is a strictly 

decreasing function of the capital-labour ratio is not inconsistent with 

indefinite growth of per capita output. It has to diminish to zero as the 

capital labour ratio increases indefinitely to preclude such growth. 

Consider, for example, the simplest version of the neoclassical growth 

model (Solow (1956) ) .  With a constant savings rate s, a constant rate of 

growth n of the labour force, no depreciation of capital and full employment 

the rate of growth k of the capital labour ratio k is given by 

(1) sf(k) - nk 

where f(k) is average product of labour given constant returns to scale. It 

is straightforward to see that if f(O) = 0 and the marginal product of 

capital, i.e. f'(k), is bounded away from n/s, that is, if f'(k) > n/s for all 

k, then k > 0 for all k. This in turn implies that the rate of growth of 

per worker output and consumption, namely f' (k)k/f (k), is positive. 

Moreover, given strict diminishing returns, i.e. f"(k) < 0, as k -> �. f'(k) 

has a limiting value, say g, exceeding njs. As such it can be verified that 

the asyrnpotic growth rate of output and consumption will equal sg - n > 0. 

Since this is a function of g which is endogenous, growth is endogenous. To 

the extent the savings rate s is influenced by thriftiness of households, 

intertemporal preferences influence growth. However, it should be noted that 

if we assume that labour is essential to production, that is, output is zero 

l 
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if labour input is zero regardless of the level of capital input however 

large, then the limiting value of f' (k) has to be necessarily zero. Thus for 

the limiting value to be positive a necessary condition is that labour is not 

essential to production. 

Solow (1956) also showed that if the production function is such that the 

marginal product of capital increases up to some capital-labour ratio k and 

then decreases thereafter, multiple steady state equilibria are possible in 

each of which per capita output is constant but different across equilibria. 

Further, there is hysteresis in the sense that depending on the initial 

capital-labour ratio, per capita output will converge to different steady 

states. Based on this model, one can (and did!) make a case for a "big" push 

investment to escape from convergence to a stable low level equilibrium to a 

higher level equlibrium, a case that has been recently rediscovered and 

extended (Murphy et al (1989) ) .  In these models, human capital plays no role. 

Lucas (1988) , on the other hand, postulates a production function to skill 

formation at the individual level that assumes that the rate of accumulation 

of skills is proportional to the level (or stock) of skills. Thus the 

marginal product -of the stock of skills in terms of the rate of accumulation 

is a constant, given the time devoted to such accumulation. In addition he 

assumes that the average skill level of the entire labour force induces an 

externality to the production process, thus obtaining indefinite increasing 

returns to scale at the economy-wide level with respect to physical capital, 

labour force and its average skills. This naturally enables him not only to 

endogenize growth but also obtain a positive and sustained rate of growth of 

per capita output. Strictly speaking, even if the externality effect is 

absent, the assumption that the marginal product (in terms of rate of skill 

accumulation) of the stock of skills is constant rather than diminishing to 

zero is enough to obtain sustained growth. In Romer (1986) the stock of 
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-private knowledge at the level of the firm can be augmented through investment 

I in research through a constant returns to scale production function using I 

and k as inputs with bounded average product per unit of k. Thus there are 

strong diminishing returns to knowledge accumulation at the level of an 

individual firm. However, aggregate knowledge has increasing marginal 

productivity. Thus both Lucas and Romer in effect make assumptions that are 

analogous to the assumption in the Solow model that the marginal proudct of 

physical capital is bounded away from zero. Thus it is no surprise that both 

obtain sustained growth of per capita income. Both Lucas (1988) and Romer 

(1986) assume fertility to be exogenous. Ehrlich and Lui (1989) analyze a 

model in which human capital is the engine of growth and generate growth in 

per capita income and consumption as a result of accumulation of general and 

specific knowledge. They link longevity, fertility and economic growth 

through their interaction with human capital accumulation in an overlapping 

generations model with fertility as one of the endogenous choice variables. 

It is clear that the two perceived problems with the neo -classical growth 

model, namely, that aggregate growth rate in the steady state is exogenous 

independent of intertemporal preferences and sustained growth in per capita 

income can come about only if there is (exogenous) technical progress are not 

inherent features of the model but the consequences of assuming that the 

marginal product of capital (or more generally of any reproducible factor) 

diminishes to zero as the input of capital (or that factor) is increased 

indefinitely relative to other inputs. Instead of directly relaxing this 

assumption about production technology, the 'new' growth theorists in effect 

introduce a factor other than physical capital (stock of skills in Lucas 

(1988) , general knowledge in Romer (1986) etc) which is not subject to such 

inexorable diminishing returns. We take a different approach in this paper: 

first, by assuming fertility and savings to be endogenous, we make the growth 

in both inputs, labour and capital, and hence aggregate growth, to be 



-5 -

endogenous in the absence of technical change. Second, by assuming that 

population density has an external effect (not perceived by individual agents) 

on the production process either through negative congestion effect or through 

positive effect in stimulating innovation and technical change, we make the .. 

change in production possibilities to be endogenous determined by fertility 
-

decisions of individual agents. However, unlike the "new" growth literature, 

our model, which is an extension of Raut (1985, 199la), is not necessarily 

geared to generating balanced growth steady states: In fact, the non -linear 

dynamics of the model generates a plethora of outcomes (depending on the 

functional forms, parameters and initial conditions) that include not only the 

neo-classical steady state with exponential growth of population with constant 

per cpaita income and consumption, but also growth paths which do not converge 

to a steady state and are even chaotic. Per capita output grows exponentially 

(and super exponentially) in some of the examples. 

2. Technological Change Induced by Population Density: A Model 

E. Boserup (1989) and J. Simon (1981) among others have argued that the 

growth of population could itself induce technical change. In the Boserup 

model increasing population pressure on a fixed or very slowly growing supply 

of arable land induces changes in methods of cultivation, not simply through 

substitution of labour for land by choice of techniques within a known set of 

techniques but, more importantly, through the invention of new techniques. 

Simon also attributes a positive role for increases in population density in 

inducing technical progress. Neither of the two authors provides a complete 

theory of induced innovation. We do not provide one here either: we believe 

that the inducement to innovate will depend largely on the returns and risks 

to resources devoted to innovative activity and there is no particular reason 

to suggest that pre -existing relative factor prices or endowments will 

necessarily tilt these returns towards search of technologies that save 
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particular factors. Instead, we simply analyze the implications of assuming 

that technical change is influenced by population density (strictly speaking, 

population size) in a world where fertility is endogenous. 

More precisely, we assume that technical change in our model economy is 

Hicks-Neutral and its rate is determined by the change in the size of the 

working population. However, for both consumers and firms in this economy 

this 1s an externality. We introduce this externality in a model of 

overlapping generations in which a member of each generation lives for three 

periods, the first of which is spent as a child in the parent's household. The 

second period is spent as a young person working, having and raising children, 

as well as accumulating capital. The third and last period of life is spent 

as an old person in retirement living off support received from each of one's 

offspring and from the sale of accumulated capital. All members of each 

generation are identical in their preferences defined over their consumption 

in their working and retired periods. Thus, in this model the only reason 

that an individual would want to have a child is the support the child will 

provide during the parent's retired life. Production (of a single commodity 

which can be consumed or accumulated) is organized in firms which buy capital 

from the retired and hire the young as workers. Markets for product, labour 

and capital are assumed to be competitive. 

Formally, a typical individual of the generation which· is young in period 

1 2 t has nt children (reproduction is by parthenogenesis!), consumes ct' ct+l 

in periods t and t+l, and saves St in period t. She supplies one unit of 

labour for wage employment. Her income from wage labour while young in period 

t is Wt and that is the only income in that period. A proportion � of this 

wage income is given to parents as old age support. While old in period t+l, 

she sells her accumulated saving to firms and receives from each of her 

offspring the proportion � of hisfher wage income. She enjoys a utility 

1 2 u (ct' ct+l) from consumption. Thus her choice problem can be stated as: 
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Maximize u (c�, c�+l) with respect to the non -negative variables c�, 

2 ct+l' St and nt subject to: 

(2.1) 

(2. 2) 

where et is the output cost of rearing a child until young, qt+l is the price 

of capital in period t+l and Wt is the wage rate in period t where the 

numeraire in each period is that period's output. 

It should be noted that restricting St to be non -negative implies that the 

young cannot borrow and spend more than their income (net of payment to their 

parents) to consume and spend on rearing children. This is a natural 

requirement since the only persons with resources to lend to the young are the 

old. But they will not lend since they will be dead when the loan is to be 

repaid. Of course, if there is a government, it can tax the old to transfer 

income to the young, but for the present let us assume that there is no 

government. Requiring nt to be non -negative is also natural given that nt are 

the number of offspring, though treating it as a continuous variable, while 

convenient, is not so natural! But leaving aside the absurdity of having a 

negative number of children, formally not allowing nt to be negative is 

analogous to precluding borrowing. After all, borrowing is simply one way of 

increasing current consumption at the expense of future consumption. Letting 

nt be negative will also increase current consumption at the expense of future 

consumption. 

The firms of period t buy capital from the old at a price qt per unit, pay 

wages at the rate of Wt per worker and maximize profits. Thus if they buy Kt 

units of capital and hire Nt workers, their profits �t are given by 
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(2.3) �t 

where F (Kt, Nt) is a linear homogeneous function with strictly convex isoquants 

(which implies that F is concave) and G (Lt) is the Hicks-Neutral productivity 

parameter that is assumed to depend on the number of young in period t. Of 

course if there is full employment Nt will equal Lt. Capital depreciates 

completely within one period. 

Clearly the first order conditions for profit maximization (for t=O, 

1,2 ... ) are: 

(2.4) 

(2.5) 

where Fi is the partial derivative of F with respect to its ith argument. It 

should be noted that in deriving (2.5) it is assumed that the producer chooses 

Nt without taking into account that under full employment Nt will equal Lt and 

hence affect G (Lt) .  In other words, the possible effect of Nt on G(Lt) is an 

uninternalized externality for the producer. If we assume that both inputs 

are essential to production so that F (O, N) = F (K, O) 0 for all N > 0, K > 0, 

then positive production implies that (2.4) and (2.5) hold as equalities. 

Since F is homogeneous of degree one in K and N, Fi is homogeneous of degree 

zero in K and N. Thus Fi (i = 1,2) is a function only of the ratio Kt/Nt. As 

such, the fact that (2.4) and (2.5) have to hold as equalities restricts the 

admissible set of qt, Wt· Put another way, qt/G (Lt) ,  Wt/G(Lt) have to lie on 

the factor price frontier associated with F. Given an admissible pair (qt, 

wt) the profit maximizing value of Kt/Nt = kt is solved from 
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(2.6) 

Assume that F satisfies the Inada conditions, that is 

Lim Lim 
k -> 0 and k -> ro 0. Then since is a decreasing 

function of kt (because of strict convexity of isoquants of F), we obtain a 

unique solution for kt as a function of qt/Wt from (2.6). The strict 

convexity of isoquants of F also ensures that kt is indeed a profit maximizing 

choice. 

The first order conditions for consumer utility maximization are (for t 

0, 1, 2, ... ) : 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

1 with equality if ct > 0 

2 with equality if ct+l > 0 

with equality if nt > 0 

with equality if St > 0 

where Ui is the partial derivation of u with respect to its ith argument and 

At is the lagrangean multiplier associated with the budget constraint in 

period t. 

If we assume that u does not admit a satiation point, At and At+l will 

be positive and if both commodities are essential in consumption, then (2.7) 

and (2.8) will be equalities. For the model to be meaningful nt and St have 

to be positive: if either is zero, since capital and labour are essential to 

production, the economy ceases to exist in period t+l! Thus 
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(2.9) and (2.10) have to be equalities as well which in turn means that 

(2.11) q 
t+l 

w 
t+l 

This is nothing but the arbitrage condition that the return from investing a 

unit of current income in physical capital, i.e. qt+l• is the same as the 

return af8t in investing it in and rearing l/8t children and obtaining a 

return of � Wt+l from each. 

To proceed further with the analysis, one needs to specify the nature of 

dependence of 8t on t. To the extent 8t reflects the cost of parent's time, 

one may wish to make it a function of the ruling wage rate. Besides, one may 

also wish to incorporate the "environmental" effects of population density in 

child rearing costs. Setting 8t equal to 8G(Lt) + �Wt will accomplish both. 

However, this formulation is much too general for analysis and only by 

restricting the form of utility and production functions it is possible to 

proceed further as in Sections 3b, 4a and 4b. However, if we set � = 0 and 8t 

is a constant for all t, without such restrictions it is possible to obtain 

some results. We discuss this case in Section 3a. 

3a. Constant Child Rearing Costs: General Solution 

With 8t a constant 8 for all t, (2.11) uniquely determines qt+llwt+l or 

equivalently (qt+l/G(Lt+l))/(wt+l)/G(Lt+l)) as a function of a/8 for all t. 

This, together with the earlier result that qt/(G(Lt), Wt/G(Lt) lie on the 

factor price frontier for F uniquely determine qt/G(Lt), Wt/G(Lt) respectively 

as constants q* and w* for t =  1, 2, ... This means that qt/Wt is also a 

constant q*jw* for t =  1, 2 .. . Given the capital stock k0 owned by the old and 

the number L0 of young at period zero (as determined a period earlier by the 

choice of the old living in period zero) and full employment of labour and 
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capital-labour ratios from period 1 on are constant as determined by F1/F2 = 

q*jw*. Thus, with full employment (Lt = Nt), kt = Kt/Lt is a constant k* for 

t = 1,2, ... But Kt = Lt-lSt and Lt = Lt-lnt so that k* = stint for t =  

0, 1,2 ... 
1 Using (2.11) in constraints (2.1) and (2.2) one observes that ct 

2 (1-a)wt - (9nt+st) and ct+l = (9nt+st) qt+l· This means that 9nt+St (= Zt) ' 

is the choice variable for utility maximization. The first order condition of 

utility maximization is u1/u2 = qt+l· If we assume that consumption in both 

periods is normal and that the marginal utility of consumption in either 

period tends to co if consumption in that period tends to zero, then u1/u2 is 

an increasing function of Zt rising from zero at Zt = 0 to co as Zt -> co. Thus 

u1/u2 = qt+l can be solved uniquely for Zt as a function H(wt,qt+l) of Wt and 

qt+l for t =  0,1,2 ... Since St/nt = k*, it follows that for t =  0,1,2, ... 

(3.1) 

Now Wt = w*G(Lt) qt = q*G(Lt) for t = 1,2... As such if there is no 

technical change, i.e. G(Lt) = constant for all t, the economy settles into a 

steady state nt - n* (e + k*)-1 H( * *) d * - -k*(e + k*)-1 H(w*,q*) w ,q an St = s 

from t = 1 on. This is the result reported in Raut (1991). Clearly with kt 

constant, output per worker is constant from t = 1. Depending on whether n* 
> < 1 the size of the economy increases, stays constant, or decreases to 

zero as t -> co. 
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3b. Constant Child Rearing Costs: Specific Examples 

Suppose now that G(Lt) is not a constant. To get some insight, let us 

assume that u(c�, c�+l) is (c�)S (c�+l)l-o. Then H(wt, qt+l) = 

(1-S)(l-a)wt so that 

(3.2) 
Lt+l (1-o)(l-a) * G(L ) n w or 

t � (8 + k ) t 

(3.3) Lt+l .\ LtG(Lt) where 

(3.4) .\ (1-o)(l-a)w * 

(8 + k ) 

Clearly the behaviour of Lt will depend on the function .\LtG(Lt)· If, for 

instance, .\G(Lt) < 1 for all Lt > 0, then Lt will decrease over time and 

converge to zero. Thus zero is the unique steady state value of Lt for such 

an economy. Let us assume away this uninteresting scenario of a declining 

economy and postulate that .\G(Lt) exceeds 1 for Lt in some interval (a, b) 

where a � 0 and b � ro A plausible assumption is that G(Lt) increases (i.e. 

there is increasing positive externality effect of population density) up to 

some Lt = L and then decreases to zero (i.e. there is an increasing negative 

externality,effect of congestion) as Lt increases further. Alternatively, one 

could ignore congestion effects and assume that G(Lt) is a logistic function 

with a positive asymptote. We explore both below. It is clear from (3.3) 

that a positive steady state value of Lt denoted by L*, if it exists, is 

defined by .\G(L*) = 1. (Of course L = 0 is always a steady state.) The 

following two examples illustrate some of the possibilities. 
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-(L-L)2/2 Example 1 Let G(L) �e for L � 0. The curve ALG(L) reaches 

a unique maximum at L = 0. 5 [L + (L2 + 4)1/2] .  Let L > 0 and A� >  1. 

Then there are two possible steady state values L* and L** given by L* L -

(2LogA�)l/2 and L** = L + (2Log A�)l/2. A� > 1, it is clear that L** > L 

> 0 and L* > 0 if eL2/2 > A�. Since L > L*, the curve ALG(L) crosses the 

45° from below so that the steady state L* is unstable. If L � L** so that 

ALG(L) is non-decreasing while crossing the 45° line from above at L**, L** is 

locally stable so that Lt converges to L** (zero) for any L0 above L* (below 

L*). Of course if L0 = L*, Lt remains unchanged at L* (Figure 1). On the 

other hand, if L < L** so that ALG(L) is decreasing while crossing the 45° 

line from above at L**, there is a possibility of a limit cycle or even 

chaotic behaviour. In this example L = 0 is a locally stable steady state. 

In fact, for the following parameter values the Li-York sufficient condition 

for chaotic behaviour (see Baumol and Benhabib (1989)), namely, that there 

exist a value of L, say L0, such that L0 < L1 < L2 and L3 < L0 is satisfied: A 

= 1. 70, � = 1, L = 2. 0. Setting L0 = 1. 56, one obtains L1 = 2. 41, L2 = 3.77 

and L3 = 1.34. Chaotic behaviour of Lt can be seen in numerical simulations 

of this case (see Figures 2a and 2b). Convergence obtain for parameter values 

A =  1.2, � = 1, L = 0.7. In this case Lt converges to 1. 3. This is 

illustrated in Figures 3a and 3b. 

Let us assume that the values of the parameters A, �. L are such that 

L � L** so that limit cycles and chaotic behaviour are ruled out. Then if 

Lt starts from any value larger than L*, it converges to L**, and the economy 

reaches a -stationary state with a constant working population, constant 

capital labour ratio and hence constant output and wage per worker. It is to 

be noted that since L** > L in the steady state there is congestion in the 

sense that G(L) is decreasing at 1**. If the economy starts from any value 
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less than L* it converges to zero. Thus depending on the initial conditions 

the economy either converges to a 'good' stationary state L** or collapses to 

zero! 

Example 2 

Let G(L) = 1/(a + pe-1L) where a > 0, p > A - a > 0, 1 > 0 

It is easily seen that G' (L) > 0 for all L � 0. 

Clearly, there exists a un,ique steady state L* = l/1 Log (P/A-a) > 0 at 

which AG(L*) = 1. Now ¢(L) = ALG(L) is an increasing function of Land ¢'(L) 

= AG(L) + ALG'(L) > AG(L) > AG(L*) = 1 for L > L*. Hence ¢(L) - L is an 

increasing function of L for L > L*. The steady state L* is unstable. If the 

initial L is less than L*, then Lt converges to zero and if it is greater than 

L* it diverges to infinity (Figure 4). In the latter case, although the 

working population increases beyond limit, output per worker converges to 

G(�)F(k*,l) = (1/a)F(k*,l). The wage rate, price of capital, and consumption 

in each period of life of each generation also converge to constants. Thus an 

ever increasing population enjoys an unchanging standard of living. 

The above examples show that as long as productivity as a function of the 

working population, that is G(Lt), is bounded above, there is no possibility 

of sustained growth in output per worker in a laissez-faire competitive 

equilibrium. At best the economy may be able to support an ever increasing 

working population at a constant wage if G(Lt) has a positive asymptote. At 

worst the economy will decline with the working population converging to zero 

asymptotically. 
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4.a Time Va�ing Child Rearing Costs. Cobb-Douglas Production and Utility 

Functions 

Let us consider the case 9t = 9G(Lt) + �Wt· It is clear that the 

arbitrage condition (2.11) continues to hold and, as such, the choice variable 

for utility maximization is still Zt = 9tnt + st. As earlier, the first order 

condition of utility maximization can be solved to yield Zt = H(wt, qt+l)· 

Using the arbitrage condition qt+llwt+l = a/9t in the first order conditions 

for profit maximization, one gets as before F1 [Kt+l• Lt+l] /F2 [Kt+l• Lt+ll = 

a/St. Given our assumptions on F, this can be solved uniquely to yield kt+l = 

Kt+l/Lt+l = h(a/9t), where h is a strictly decreasing function falling from ro 

as a/9t -> 0 to zero as a/9t -> ro ,  Noting that Kt+l/Lt+l = St/nt, we solve 

for nt and St to obtain (for t=O, 1, ... ) : 

(4.1) nt 

(4.2) st 

(4.3) w 0 

(4.4) wt+l 

(4.5) qt+l 

(4.6) Lt+l 

(4.7) et 

H(wt,qt+l) 
et+ h(a/et) 

h(a/St)H(wt,qt+l) 
et 

+ h(a/et) 

G(L ) [f(k ) -0 0 k f' (k ] 0 0 

G(Lt+l) [f [h(a/9t)] 

G(Lt�lf' [h(a/9t)] 

Lt nt 

9G(Lt) + '1 Wt 

) 
) t � 

where 

0 

k = K /L . 0 0 0 

- h(a/9t) f' [h(a/9t)] J 

� 

-

t � 0 

It is not easy to derive even the qualitative properties of the solution 

to the above set of difference equations. Once again to gain some insights 

let us assume as before that the utility function is (c�)0(c�+l)l-6 and 
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further the production function F(K,L) is KaLl-a. Then, h(a/8t) = 

(a/1-a)(a/St)-1 and H(wt, qt+l) = (1-6)(1-a)wt. The system of equations 

(4.1)-(4.7) can be reduced to two basic difference equations. 

(4. 8) 

a a _
a
l G(L

t
) [8 + '1(1-a)kt] 

r-a 

(4. 9) 
2 a (l-6)a(l-a)(l-a) kt a [a(l-a)+a) [8+Yf(l-a)kt] 

(1-a) (1-6) 
'1 

a [ (1-a) <l-6)] [ a(l-a) J ["(l-a)kt 
a

] 
Yf a(l-a) + a 8+Yf(l-a)kt 

. As such, if (1-a) (1-6) 
'1 < 1 it is seen from 

(4.9) that the working population converges to zero as t -> oo regardless of 

the process G(Lt)· This holds even if G(Lt) is purely time dependent as for 

example G(Lt) = (l+€)t with € > 0 so that total factor productivity grows 

exponentially in time! However the welfare u(c1 c2 ) of each member of t' t+l 
the declining working population increases over time. 

4b. Cost of Child Rearing Proportional to the Wage Rate: Some Examples 

Two special cases are of some interest. Suppose 8 = 0 so that the cost of 

rearing a child at time t is proportional to the wage rate at time t. Then we 

see from (4.9) that nt, the growth in working population, is a constant 

* n = a(l-az£1-a)(l-a) (independent of the process G(Lt)) so that 
Yf[a -a) +a ] 

* t Lt= L0(n ) . From (4.8) we note that 



-17-

(4.10) Log kt+l = Log G [Lt] + Log a +  Log� - Log a +  a Log kt 
Denoting Log kt by Xt, Log G(Lt) by gt and Log a + Log � - Log a by w, the 

solution to (4.10) is 

(4.11) t + x a + 0 
t 
� 

�o 
T a 

If as in Example 2, G(L) = [a +  �e-�L] -1, a >  0, b > 0, � > 0, then G(L) 

is bounded and converges to 1/a or 1/(a + �) depe�ding as whether Lt -> w 

(i.e. n* > 1) or Lt -> 0 (i.e. n* < 1) as t -> w. Hence using (4.11) and 

noting that 0 < a < 1, we can say that as t -> w, Xt converges in either case. 

The average and marginal product of labour, and hence the welfare of each 

member of a generation, also converge to constants, with the working 

population increasing indefinitely in the first case and dwindling to zero in 

the second. More generally, if G(L) > 0 is bounded above, then (4.11) implies 

that (1-a)xt is bounded above as well, so that the welfare of each member of 

any generation is bounded above, with the size of the working population 

growing or dwindling depending on whether n* is greater or less than 1. 

What if n* > 1 (so that Lt -> w as t -> w) and G(L) is unbounded? Suppose 

G(Lt) behaves (for large values of Lt) as e�Lt (� > 0) so that gt behaves as 

�Lt �L0(n*)t. Then from (4.11) it follows that Xt+l (for large values of t) 

is 

(4.12) 

Since n* > 1 > a, as t -> w, Xt+l behaves as �L0(n*)t/(l-a/n*) + wjl-a. This 

in turn means that kt behaves asymptotically as exp(�L0(n*)t/l - ajn*) and the 

average product of labour = G(Lt)k� behaves as e(a + vLo)(n*)t where v is a 

positive constant! Thus one obtains super-exponential growth. On the other 

hand, if G(Lt) behaves like A(Lt)� for large values of Lt (� > 0 implies that 
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G(Lt) is still unbounded) then g(Lt) behaves like � log Lt = � [logL0 + tn*] .  

From (4.11) it can be shown that Xt+l behaves as �n*t/1-a large values of t. 

This means that kt grows exponentially at the rate �n*/1-a. With G(Lt) 

behaving like [L0(n*)t] � = (L0)� (n*)�t, exponential growth of kt implies 

exponential growth in the average and marginal product of labour and in the 

welfare of each member of a generation. 

4.c Cost of Child Rearing Proportional to Externality Effect: Some Examples 

The second special case is � = 0. This implies that the child-rearing cost 

is proportional to the externality factor G(Lt) but does not depend on the 

wage rate. This is not an altogether implausible case if the factors that 

bring about positive (or negative) externalities associated with population 

density (e.g. congestion or economies of scale in schooling) also influence 

the cost of child rearing. The assumption that 8t = 8G(Lt) is a simple 

representation of this effect. Retaining the assumptions that both the 

utility and production functions are Cobb-Douglas, we get the basic equations: 

(4.13) 

(4.14) kt+l= 

(4.15) Lt+l 

- n =(l-o)a(l-a) (l-a) 2 
t" - - . -- [a(l-a)+aJ8 

_Q_ � G(Lt) or 
1-a a 

(1-o}a(l-a}(l-a} 2 
[a(l-a)+a] 8 [ 

and 

� G(Lt-1) J a Lt _Q_ 
1-a a 

Consider the case where G(Lt) = AL�. Substituting in (4.15), taking 

logarithms of both sides, defining it+l =Log Lt+l and 

-
w= 

2 
Log [ (1-o}a(l-a}(l-a} ( aA8 ) J 

[a(l-a)+a] 8 (1-a)a 
we get: 

(4.16) w. The solution of (4.16) is 
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(4.17) it 
t D2 

t - N + Dlpl+ P2 J.La 

where p1 1 + 1/2 1 - 1/2 (1+4�a} P2 (1+4�a2 
2 2 

The initial conditions D1 + D2 - w/J.La = Log L0 and DlPl + D2P2 - w/J.La 

Log L0 + Log n0 determine D1 and D2. Of course n0 depends on the given k0. 

Solving for D1 and D2, we get: 

(4.18) 

(4.19) 

D1= [ ( :ii + Log L0 ) (l-p2) + Log n0 J (1 + 4J.La)- 1/2 
J.La 

D2= [ ( N + Log L0 ) (p1- 1) - Log n0 J (1 + 4J.La)- 1/2 
J.La 

For small values of J.La, (1 + 4J.La)l/2 = 1 + 2J.La, so that we see from (4.17) 

that it = Log Lt grows asymptotically at the rate J.La. From (4.15), it follows 

that Log kt+l also grows at the same rate as well. Hence kt and Lt grow 

super-exponentially. 

Consider the initial values of L0 and k0 given by: 

(4.20) 

(4.21) 

2 a (1-o}a(l-a}(l-a} k 0 
[a(l-a)+a] e 

a e G(L ) 
r-a a: o k 0 

1 and 

It is clear then from repeated application of (4.14) and (4.15) that kt and Lt 

remain at L0 and k0 so that these are steady state values. Further, any 

values other than these will lead to either L1 f L0 or k1 f k0 or both so 

that the economy will not be in a steady state. If we assume that (4.20) and 

(4.21) have unique solutions, then the steady state of the model is unique. 

It is easily verified that if G(L) = ALJ.L, equations (4.20) and (4.21) 

imply w = -J.La Log L0 and n0 = 1 so that from (4.18) and (4.19) we find D1 

D2 = 0 so that the economy remains in a steady state from period zero. The 
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fact that other values of k0 and L0 can lead to super growth in this special 

case of G(L) = ALP suggests that in the general model convergence to the 

unique steady state is not assured. It is also clear from (4.15) that if G(L) 

is bounded, kt is bounded and if the right-hand side of (4.14) evaluated at 

the upper bound (lower bound) of kt is less (greater) than unity, Lt declines 

to zero (increases beyond limit) over time. However, with kt and G(Lt) 

bounded, the average and marginal productivity of labour are bounded even if 

Lt is unbounded. Thus in the case of � = 0, as in the case of 8 = 0, we can 

generate an economy with super exponential growth, an economy which eventually 

disappears altogether or an economy with ever increasing labour force enjoying 

bounded levels of living for appropriate choice of the functional form G(L) 

and the initial conditions. 

5. Social Planner's Optimum and Public Policy Intervention to Sustain It 

The discussion so far looked at laissez-faire competitive equilibrium 

paths. Since the framework involves an externality that is not 

internationalized by any of the agents, it is worth examining the implications 

of a social planner internalizing it and whether the social planner's optimum 

can be realized as a private optimum given suitable public policy 

interventions in the form of taxes and subsidies. 

For this purpose let us assume that the social planner maximizes the 

discounted sum (with a discount factor �. 0 < � < 1) of the utility of a 

member of each generation multipled by the number of individuals in that 

generation. Since individuals consume only when they are working and when 

they are old, generations are indexed by the period t when they are working. 

In period 1, the number of persons in the last period of life (i.e. the number 

of individuals of generation zero) and the number of working young (i.e. the 

number of individuals of generation 1 which is also equal the total number of 

children that members of generation zero had in period zero) are both 
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prodetermined L0 and L1, respectively. The planner can choose the number 

of members of all subsequent generations, i.e. Lt for t � 2. The consumption 

of a member of generation zero in period zero also predetermined at c�. 

But their consumption ci in the last period of their life, namely, in 

period 1, (and hence their utility u(c�, ci) and the consumption while 

working and while old (and hence their utility) of all other generations, 

(c�, c�+l) (t = 1,2, ... ), are subject to choice by the planner. The 

savings of a member of generation 0 while working is predetermined at s0 

while the savings of a member of every other generation, St (j = 1,2, ... ), are 

again subject to choice. For simplicity the cost of child-rearing is assumed 

to be 9 per child at all t. Thus the planner's problem then is to: 

co 

Maximize 
t� subject to 

(5.1) 2 Lt-lCt + 1 Lt(ct + St) + Lt+l9 � G(Lt)F(Lt-lst-1• Lt), t 1,2, ... 

(5.2) Lo Lo, Ll Ll, 1 _l so co co, so 

(5.3) Lt � 0, i � 0 i 1,2, t 0, 1,2 ... ct 

Assuming a solution exists and it is an interior one, the first order 

conditions for t =  1, 2, ... are seen to be as follows (where Et is the shadow 
1 2 price of constraint (5.1) at time t, ut = u(ct, ct+1), rt = F(Lt-1St-1• 

Lt) and subscript j of a function denotes the partial derivative with respect 



to its jth argument): 

Choice Variable 

(5.4) 

(5.5) 

(5.6) 

(5.7) Lt+l 
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First Order Condition 

L f3t-l t-1 
t-1 u2 

1 2 €t8 + €t+l(Ct+l + St+l) + €t+2Ct+2 
13t+lut+l + 

€t+l [Gl(Lt+l)Ft+l+G(Lt+l)Ft+l] + . 2 
t+2 €t+2GCLt+2)F1 st+l 

Now simplifying, (5.4) � (5.6) become 

(5.4)' 

(5.5)' 

(5.6)' 

f3t-l t-1 u2 

Substituting then in (5.7), it is seen that 

(5. 7), €t8 = f3t+lcut+l - u�+l 

€t+l [Gl(Lt+l) Ft+l + 
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Now (5.4)' - (5. 7)' together imply that 

(5.8) €t 
€t+l 

(5.9) et e €+1 

t ul G (Lt+l) Ft+l and t 1 u2 

at+l(ut+l - t+l ul €t+l 

+ G(Lt+l) Ft+1 
2 [1 + 

1 t+l c�+l) ct+1- u2 

Gl(Lt+1) Ft+1 
J t+1 G(Lt+1)F2 

On the other hand, from the first-order conditions of private (consumer and 

producer) optimization (equations (2. 4) - (2.11)) it is seen that 

� t 
Ft+l (5.10) u1 qt+1 G(Lt+1) and 

>.t+1 2 1 
ut 

(5.11) >.t e a G(Lt+1) Ft+l 
xt+l 

2 

A comparison of (5.8) with (5.10) shows that if ..:..t__ � 
€t+l >.t+l 

given the same values for Lt and Lt+l• the private and socially optimal 

.. 

consumption and savings decisions would be the same. Now et/Et+1 is the value 

of a unit of output available in period t+1 in units of output of period t, 

i. e. it is the social discount factor for output, and >-tl>-t+l is the 

corresponding discount factor in the private market equilibrium. However, as 

is to be expected, a comparison of (5.9) and (5.11) shows that even if there 

were no externalities associated with population, i. e. G1(Lt+l) = 0 and that 

Et/Et+1 = >-t/>-t+1• private and social decisions with respect to fertility will 

in general differ. Even though the cost of an additional child, i.e. the cost 

of child rearing, is the same for private and social 
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decisions, under the assumption et/et+l At/At+l• the benefits represented by 

the right-hand sides differ. 

A selfish parent in her private decision counts as benefit only the 

proportion g of the wage G(Lt+l)F�+l earned by the additional child. 

However, for the society there are three contributions of an extra child, 

represented by three terms of the 

term(pt+l;et+l) (ut+l - u�+l c�+l 

right-hand side of (5.9). The 

- u�+l c�+2) represents (in 

units of present value of output of period t+l) the contribution to welfare 

an extra person in period t+l, i.e. her utility ut+l net of the cost of her 

lifetime consumption, i. e. t+l 1 + t+l 2 and for a ul ct+l u2 ct+2 
concave utility function this is non-negative (being zero for a linear 

homogeneous utility function). This term arises from the fact that social 

of 

welfare is utilitarian with respect to each generation in that it adds up the 

utility of all members of the utility function in determining the contribution 

of each generation to welfare. Thus this contribution is Ltut. If instead 

one considered the contribution of each generation to be the welfare of a 

representative agent, it would be only ut. In the latter case, the first 

order conditions (5.4)'-(5.6)' will remain unchanged and in (5.7)' (and hence 

in 5.9) the first term will be absent. Whether one should take a utilitarian 

point of view is, largely though not entirely, an ethical issue (Koopmans 

(1967) and Nerlove et al (1987)) which we do not wish to pursue here. The 

term G(Lt+l)F�+l is the contribution to output of an extra person in 

period t+l and the last term Gl(Lt+l)pt+l is the externality effect of that 

extra person. 

It is evident from the above comparison if the planner with perfect 

foresight can set taxes or subsidies on income transferred by a child to her 

parent so as to reflect social considerations, thus making the net of tax or 

subsidy contribution equal to the social value of an extra child, social 

optimum can be realized as a private market equilibrium. The required net tax 

(r) (in fact, it is a subsidy since it is negative) is 



(5.12) r = a 8t+l [ 
e G(L )Ft+1 

t+l t+l 2 
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t+l u 

Thus, each parent in deciding how many children to have will take into 

account that each child will provide a proportion � of her wages to the parent 

and the government will provide a proportion -r of each child's wage. In all, 

the parent, in her old age, received a proportion a - r (recall r < 0) of each 

of her children's wage. By definition, the cost of subsidy will be financed 

by a lump sum tax. From (5.12) it is seen that if there is no externality (Gl 

= 0) and if u is linear homogeneous r = a - 1 or a - r = 1. This means that 

fertility decisions would be made in the expectation that the entire wage of 

each child will accrue to the parent in her old age! 

6. Conclusions 

To conclude, with endogenous fertility and endogenous technical change 

arising from externalities associated with labour force growth, the problem of 

stagnant steady state per worker consumption (as in the neo-classical growth 

model with exogenous fertility and no technical change) is not necessarily 

avoided. Whether in fact a steady state exists, whether it is unique and 

stable and whether per capita consumption grows indefinitely all depend on 

preferences, technology and the nature of externality associated with labour 

force growth. Only sound empirical research will shed light on this issue. 

Private fertility decisions (under selfish preferences) may be non-optimal 

from a social perspective even in the absence of externalities associated with 

population growth. Externality adds yet another reason for this divergence. 

However, as is to be expected, a planner with perfect foresight can realize 

the social optimum through private decisions by appropriately taxing or 

subsidizing the intergenerational transfer that is distorted, namely, the 

payment made by the working young to their parent. 

l. 
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Figure 2a 

Parameters A =  1 .70, y = 1 .0, L = 2.0 
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Parameters � = 1 .2, y =  1 .0, L = 0. 7 
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