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i. Introduction

Shapley (1953) originally gave two equivalent approaches -
one is axiomatic and the other one is random Order = to the
valuation of games with finite number of players. In social
gciences, games with infinitely many players - each with

'negligibie effact on the total outcome - occur very frequently.
Asymptotically, these can be represented by games with eonmbinumm
of players,each’player having negligible weight in changing
the outcome, in @pe same sense of approximation as used in
physics tp appf&ximaté infinitely manj liquid drops in a
contaiﬂ;i with cohginuugiof points. | A |

Analogue of the éxiomatic approach of finite games to
non-atomic games is a well established éreaﬁof’game theofy;ﬁ
whereas for random order approach, itG’MQAaptatidn“is only
upto proving the imposs1bility (See section 2) for a
very small class of non-atomic games, provided we take théfﬂ
underlying player spaceﬂto be isomorphic to ( Co;lj,bé),
Wherefﬁ\ is the borel caalgebra of {0,1) with the understanding
that the sets in @5 are the possible coalitions. We shall
have thé §ossibility of random order type of approach to some
semi-values on a very big space of games., Semi-values have

economic importance. Jamet and EawBaR (1979) used it to

characterise a class of price mechanism.



2. Random Order Approach : Einite and Continuum Cases

Let us Tirst consider the finite case. Let N = <le1.,2,... ,n}
be a fixed set of n players and let @) be the power set of N.

Let

N

Tt is easy to varify that GN is a linear space OVer R and let

Lo

FA = §V 6 oyl v ;Ls-additivé}

T4 is a linear subspace of Gy. For any subspace & C Gy denote

by 4 = ‘{Lv cals,re@ ,s521 = v(s) 2 v(cn-)}

.The games in -Q+ will bo called the monotonic games in Q. Let
®- %9 : N—Nlg is l-l,onto?‘z,
For each 8§ in, define the linear Operq%bo;c' g% on .GN by
O en(s) = v |

One can varify easily that G*GNC GN‘ We shall call a subspace

QCGN'to»b'e symmetric if for all o e@, Q&

Definition 1  An operator 9_:(;“«% FA wil: be called a yalue
on_GN if it satisfies the following axioms:

Axiom 1 (Linearity)

Asglon 2  (symmtry).

dos = a4¢ ¥ 06 @



Axiom 3 (Positivity)
+ -
06y < Fa
Axiom 4 (Efficiency)
(dv) @) = w(N) ¥ ve Gy

For intuitive meunings to above axioms see Shapley (197%). It
is proved that there exists a unigue value oOn GI' We shall

call an operator linear, positive, efficient if it satisfies

respectively axioms 1,3,4 on & linear subspace Q of GN; if Q is
a symmetric subspace and on operator satisfies axiom <, we shall
call it a symmetric operator.

Definition 2 A semi-value on o symmetric subspace of GN is @

linear, symmetric, positive coperator = from that.
gubspace to FA,

A rendom order on N is a transitive, irreflexive and

complete binary relation >pCC N x N. TLet (2, be the set of
" all such random orders, It is easy to see that all random
orders on N can be induced by the permutations and vice versa

in the following way: , _ S
>p i idpd <« a(i) >e), ee® ... B.1)

An initial segment in the random order >R ig a set of the form:

I(s, >3) = f‘{jeN:s>Rj} s e

Thig is the set of players who are before s in the ordering

>R' A marginal contribution function (set function) in & random

order >R for o game v is a measure ¢Rv on (N,@B) which satisfies
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(P (1) = v(xa,p) U 1) - v(IE,p)).
Ve note that there is a 1-1 and onto correspondence between
. und @satisfyingﬂ.l and hencs we cen’ identify eucl2p o
with its associcted permutation g in @ In the random
order, induced by @, we shaoll identity a(i) by player i. With

this convention, we have

I(S;?R)\'= fij e Iz a(J) < 9(S>i% = I(s,n) say.

Let ébﬁl~be the power set of _QLand”l%ﬁ &g'ﬁe o probability

measure on (.Q2 , @%n_). Define the operator @R3QN13>E%. by

(9,v)(8) = J (9%%)(S)awle) (n.2)

i

Proposition S “®R is & value on G if @) is a right invariant

probability measure, ‘ .

Proof : Linearity, positivity and efficlency follow easily.

Cym . = .
et mE und v € GN be arbitrarily fixed. We want to
show that Opm* = 7™ 9p. Now note that
a,. % . * . . * .
(9%(n v))(1) = (m v)(I(4,0) U{lg) - (n v)(I(1;®))

- (1), en ) UnH)-v 1T wem)

- (o) (nmh(1)) ¥ ie ¥

Hence
(9P (n*))(8) = (9v)(n"Ts) ¥ s e
Now,
Pponrv)(s) = S (9%(n*v))(8) aw(s)
= wf b(¢9nv5(n"lS)dw(gn) Since tv is right
) - dinvariant

- (9t
e TR ¥sS e@and ¥ v e Gy

s R (¥R)(S) @ an N

QED



HES )

Now let us turn tothe non-atomidc ease

Notations and Definitions:

I = [0,17] : player set
(}5: borel c-algebra of I : set of possible coalitions
A game is a set function v:@%iaﬂR with v($) = 0. 4 game is

said to be monotonic if S,Te¢. , SDT =D v(s) 2 v(T).

A game is said to be of bounded variation if v = u-w, where

u and w are both monotonic games, Denots by
BV - set of all games of bounded variations.

It is easy to varify that BV is a linear zpace and with the

following norm it is a Banach space,

[1v]| = inf w(I) + w(I): v = u-w, u and w are monotonic
: games |

Let FA = set of finitely additive set functions froﬁNBV
NA = set of non-atomic measures on (I, }~ )
plia= [|. || = closure of the algebra generated by the

powers of non-atomic measures

@C;: set of all borel automorphisms of (I, ).

L

A random order on I is a transitive, irreflexive and complete

order >PL which also satisfies the following: The family
D= {I(s,>R)ls el éﬁU I U;éwi,(; I, sayQ}

With the convention of I(-®,>p) = ¢, I(=, >3) = I, generates
the borel o-algebra of I, Tet

T = set of all random orders.
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As in the finite case, we define the marginal contribuftion

function in a random order >R for a game V to be a measure
@RV, on (I, ) such that (@Rv)(I(s,>R)) = v(I(s,)R)). Note
that for a geme v and a random order >R if @RV existe it is

unique.' Tt is shown for all v in pNA and >R in ,;,¢5 exist.

If random order approach of finite case could have

o

been adopted for even a smallest, eqoﬁémically important
clags of gaﬁes, pNa, then we could get a c-algebra of. 1
and a probability measure on it such that E.2 defines a value,

but we have the following.

Theorem 4 (Aumann and Shapley)
There is no c-algebra of . with a probability measure
-~on it such that the positive, efficient linear operator

¢:pNA =P FA  defined by

wv)(s) = 4 (#Fv)(s) aw(®r)

is symnmetric.
proof. See Aumann and Shapley (1974, Theoren D)

3. Semi Value

We shall give here a random order type of approach to
semi-value on a quite large space, OR(Ey; of gemes. Let
B 6(5) . identify e(x) as the player x in the ordering induced

by ». Define

I(s,0) = ix e I: o(x) < e(s)}
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Let 9% be a measure on (I,8%), satisfying
(9%v)(I(s,0)) = v(I(s,0)) ¥s €I

Note that whenever 99v exists it is unique. Let

or @) - %V e Bv : 9% exists V o 6"

Proposition 5

OR ” is a linecr symmetric subspace of BV,

Proof ILet vy,v, € OR i and g 11 .

(¢%v,+90v, ) (I(s,0))

il

(9%v, ) (I(s,0)) + (9%%;)(I(s,0))

it

v (1(s,0)) + v4(I(s,6))
= (Vl + vz)(I(sye))-
Hence (‘Pev + cPevq) equuls to infact ¢° (vl+v2) and thus
v +v, € OR@ Similarly o € @) ana v € R@ ov e R .
Let 7 6@ be arbitrarily fixed. To show n* OR@ COR..

. -] .
et o e (B. wote that (9%m*v)(8) = (P9"v)nT(S) and ‘since

(‘a"env)n_l is a measure, SO0, PO *r exists and hence v S‘OQ@
QED
Theorem 6

There exists a c-algebra, ‘@ of @and a measure -

on ( @ , ‘®) such that the operator ?: OR ; >FA defined
by
(9v)(8) = L (9%v)(8) aw(o)

is a semi-value on OR@.-
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Proof : Let us adorn@ with discrete topology. So it is
trivial to note that @ with this topology is & locally
compact topological group. Let @@ be the borel d-algebru

of @ . By Haar measure theorem \ Halmos 1964, Thzorem B. '

there exists a regular borel measure which is right-invariant.

Let W be this right invariant borel measure on (/@7@@.

Linearity follows from the fact that ((Pev)(S) is linear-

invforall se @ , ec¢€ @ . To show positivity, let
6 € a@ , and let v be a monotonic game in OR @ , then for

s > t in the induced order of o.

(99v) (I(s,0) \I(t,n)) = (98v)(I(s,n))=9v(1(y,0))

(v(I(s,6))=-v(I(t,0))
s 0 sin I(s,q) _ I(t,e).

i

Now, the sets of the form I(s,e) N\I(t,n) generate ® on 1
Hence, (99v)(8) > 0 ¥ 38 e@ = (“Pev) e FA" = 9v e Pa’
To show symmetry, let T € @ and v € OR@ . Then

(9n v (S)

i

J o (9%m7v)(8) aw(e)
®

S (‘1"env)(n"l s) daw(en) Since is right
{ invariant

i

(ov) (™18

i

(n*pv)(S) ¥ S8, V.

il

Hence 9n* = n*9

Q ED
Remark By mimicking exactly the same way as in proposition
12.8 of Aumann and Shapley (1974) it can be shown that
OR @ D oplA. It is important to know whether OR@g:contains
DIFF (cf Marten 1978) because DIFF is the upto date largest

space on which a value exists.
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