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LECTURE 1

MATHEMuTiCAL PRELIMINARIES

We shall develop 2 body of ccncepts and results which will be
needed, somewhere or other, in our main stream. One can use the word
"game" in place of 'set function' interchangably.

Let |

I=1[0,1]

63= borel o-algebra of I

Whenever we .use any set, it is understood to be a set from (fjunless

otherwise stated.

Definition 1.1t A set function is amap v : @ -~ fd s.t. v(¢) = 0.

v is monotonic if ¥ S,T, S ¢ T ===> v(8) < v(T).

Definition 1.2: v is said to be af bounded variation if there exist

monotonic set functions u and w s.t. v=u~-w. Let
BV = set of all set functions of bounded fariation.
- 1
Define agap {|.|| : BV » 322 by

Hvll = inf {u(I)+w(I) : v=u-w, u and w are monbtonic set function}

One, at once, varifies that||.|| is a morm on BV. Call this as BV - norm.

Definition 1.3: A chain & is a finite collection of sets. {Si}z=l - G?,s.t.
9= 8, C 5, weee <85 = 10
For a chain § and a set _function v, define
n o :
vl = L Ivtsp) - visg p)
Note that for each & , H.HQ is a "semi-norm". The following

theorem establishes the relationship between BV-norm and . H

Proposition l.4: v € BV <===> l|V'lQ is bounded ¥ 2 . Moreover

[l = s ol
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A non-null coalition A is said to be an atém of v if ¥ T¢C A either T
or A=v e nll. A nemyetdens @ © funciion (game) is a set function without
any atom.
Note that if v is a measupre tiwil both the definitions are same. Moreover,
if u is measure on (I, ) then u is non-atomic if and only if

w({x}) = 0 ¥ xe I |
Example 1.13: Let u = Lebesgue measure on (I, §»). Then liis‘non-atomic.
Let, for some positive integer n,

w(sy = CueN®, wse.
It is very easv to varify that v is a non-&tomic set function. The following

theorem will be used widely in the sequel.

Proposition 1.14 (Lyapuncv's thecrem): Let u e(NA)" then R(y) =

{uv (8)c¢ ’Ezm: S e} ) is compact and convex.

Proof: See (3).

1
Corollary 1.15: Let pe (88)" and let s and 5° ¢ @ are s.t. S O s°.

Then +Y sra exigt a family of so=
{Sue@},:Oiaf_l} s.t.
PR , 1 : C
0 pEN = Ay (-0 wsh, ma

(ii) a > B ===> Sa'_D SB,

Proof: See A-S(1) lemma 5.4, pp.36.

Proposition 1.16: If wu e NAl, then there is an automorphism 6 of (1, )
s.t.

8y, w(s) = ue sy = M8 ¥s5e@),

where A is a Lebesgue measure.

~

O~
Proof: See K,.R.Parthasarathy (1977) (2) proposttion 26.4 for ty@ proof of

a more general result.
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Definition 1,17: & linear subspace Q¢ of BV is said to be internal if

—

i . R SRR +
?!VIQQ “y§%: © (7Y :u,we Q' (not BV') and v = u-w}

Vi

1

va Q.

Exercise 1,18: The BV-closure of an internal space is internal. (See A-S

pp. 31).

Proposition 1,19: PNA is internal.

Proof The proof will be given in several steps. Let us start with:

Definition 1.20: Let £: I" + | . Define, for each x ¢ IV,

k
T(x) = sup igl If(lc_i) - £(x, )],

where sup is taken over all finite "chains" of the form

o k
0 <x <x' <., <% = x,
=X X o X

Tf(g) is called the total variation of f. Ncte that

X2y ===>0 < T (%) < Ty) <= .

Let 1 = (1,1,1,.,.,1). If Tf(l) < = , we say that f is ef bounded varistion.

£ is of bounded variation and Tf is

-y
{

<
s
t
~

Lemma 2.7 - i

. n
contihuous on I,

Proof: See A-S(1) pp. 4€-49. Also seec Apostol (4)pp. 132,theorem, 6.14
for function of one variable case.
Now, for each k > 0 and m with 1 <m :_Qk, define a measure
k _ Ak m-1 m
)xm (8) = 2 A(Sﬂ[——k- , T]),
2 2
where A is the Lebesgue measure. Denote by
10 Aps e Ay
X oK Kok
Note that R(A") = [0,1]° and ¥ i # j Ai i.Aj s ¥k.
Denote by

A= {for": k> 0and £fe cMROX)) with £(0) = O} .
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Lemma 1.22: A is a sub-algebra cf BV,

Proof: Define a lineur cperater yg: R(Ak) > R(Ak—l) by
\Ak £k Ak 2%
WL oyl AT M A
lyk /\l;, 2, <o 2k ""—"—_’2 S .-..:,——‘—_—"""‘"2

Note that ¥ is an ontc muapping. Define, for k > m’
Vem = Pa® oo O ¥y © N
note that Yrem is a linear map from R(Ak) onto R(A™) with
k m
YA ) = A
Now, let u,v ¢ A, Then u and v are of the form:

u = foxk, fe Cl(R(Ak)) and k > 0

v = gokm,' g € Cl(R(Am)) and m > 0

w.l.g. assume k > m., We want to show utv ¢ A. That is, we want to produce
an r > 0 and h ¢ Rl( AT s.t.

r
utv = ho X

For thas, toke h = § + g“

2 . .
¢ Vi and r = k. Similarly, to show uv e A

take h = f. goowkm ond r = k. Other conditions are also easily varified.
Q.E.D

Lemma 1.23: A is internal

Proof: Let ve A, Sov=~Ffo A for some k > 0 and £ ¢ Cl(R(Ak)) with

f(0) = 0., We want to shcow

Hvilgy =Hviiy

Set in= 2k, R = R(Ak) = In; and define, for each x ¢ R,

k

f+(x) = sup z max(§, f(xi) - f(xi_l))
iil

£(x) = sup ) max (0, f(xi;l) - f(xi))
i=1

where sup is taken over all chains of the same type as given in the

definition 1.20. Hote that



Te

E =f - F

]
+h
+
+H

Moreover, the above decomposition has the following properties:

+ - . . ,
£ and £ ars continuous and Tf is bounded, by lemma 1.21.

™o "o

l'VIIBV = T(1) = f+(}) + £ (1), since all chains in ‘the

definition of Tf can be realised by taking X3 = Ak(Sj) from chains in the

definition of |} iIBV and vice versa, owing to the mutual singularities cf

T 4
the component measures of X (How?)

Had £ and £ e Cl(R) then the proof of the lemma could be =28
simple as upto above. But f+, f_gf Cl(R). The approach to be adopted here
is to get k,h € Cl(R) S.te

(i) £ = h=k

(ii) h(0) = k(0) = 0, and

(iii) h(1) andé k(1) approximate f+(l) and £ (1).

To that end, denote by fi = %§S§l- . Fix e > 0

and D = max | fi(X)
i.x
arbitrary- and let & > 6 be s.t.
| |%-y||<§ ===> max lfi(x) - fi(y)l < g ¥ %,y e Rand
i

§ < 7D (it is possible).

Let us define a linear operator from C(R) to C(R) by

g(x) » 250 = f 8((1-8) x + 6y) dy
yeR
- (1-8)x,+6
= L; i I § * Tg(2) dzl,..., dzrl
) zi=(l-—6)xi :

The integral above is either Reiman or Lebesgue sense since both are same
for continucus functions. Now, note the fcllewing:

3°: g6 € Cl@R) even though g is just continuous, which is by =

.

property of Reiman integral.

3° 1f g ¢ cXR) then (), = (1-8)(e,)°.
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5° o is non-decreasing ==3 7% is alsc non-decreasing and
8
e (0) > =(0)
é
g (1) < (1)
o o .
6 For cvery x & R, there exists y ¢ R s.t. ||x-y|| < § and

8 .. . . .
gly) = g°(x). This is true besczuse we are averaging a continuous function

around a cube consisting of sides less than § from X.

i ¥ x geR and ¥i, we have lfi(x) - fi(x)] < ¢ 3 by applying 6% on
g = fi'
8° 3(£ -£)(x) 6 s )
8 . )
axi T = I(f )i(X) £ (X)l + lfi(x) fi(x)‘
< 8 |£]60] + e by end 7°.
< 8D +e
<2e vi
0 () n
g =z=z=> f - £ + 2 ¢ u is non-dccreasing where u = 2 X, Now define
i=1
h=¢%_ £fO)+2cu, and

K= nef = (-8 4 (892 42 ¢ W) - £79(0)

Note that this h and k meet the demands of h and k stated at the end of 2°

above. Thus, ho Ak and k oJ\k eA+ , Hence,

[1vll, < b(1) + k(1) = 2 B(1) - £(1) and

vl Hvllg <2 £81) - 2 £%0) + 4 e (D) - £
<2 £ - 26°(0) +hen - B (by )
= f+(_J;) + £ (1) +H%enm
= HVH+ 4 ¢ n.

Since ¢ is arbitrary lemma is proved. Q.E.D.



- 11 -

Lemma 1.%24: Let L = {u € NA : u << A} ,where) is the Lebesgue measure.

Then L& A, the BV-closure of A.

Proof: Let uw e L. Thin u << A. So, by Radon~-Wikodyn theorem, there
exists f ¢ Ll(x) sS.t.

w(s) = [ £ dt ¥se ).
k
Given €> 0, there exists simple function s = [ a,

SE-s] at < €, (see (5) Theorem : 3.13).
where {Ai}t is a partition of I and a s'ia. It is alsc possible to choose
Ai's as diadlic intervals of I. Define,

n(s) = £ s(t) dt.

Note thatn € A and ||u-nl|BV§_f |f-s| dt < e . Thus u can be approxima-

—

ted by members of A and hence u € A.
Q.E.D.

Now, we turn to the proof of the propesition 1.19. Note

the foll.wing cobservations:

1° Since A is a Banach algebra, so is A and hence lemma 1.24 implies

that 4 contains all the polynomials in measures in L and also their limits.

But the problem is that L # whole of NA. TFor this

2

Let v ¢ PNA., Then v is the BV-limit of a sequence {pn} of
polynomials in NAl measures. Since each Py involves finitely many such
measures, there are only countably many such measuresinvolved in the entire

sequence; let them be ul, u2,..... Set

o

=) u,/ 2
i=p *

Note that for each i, By << Now, by proposition 1.16 there exists

i

an automorphism 8 of (I,Qy s.t.
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0, ¥ = A
Note thet For such an automorphisi: Bﬁpn ore polyncmizls in G*Ui all of

. 1 O e 3
which are < < 6, n = A. Hence by 1~ above 9*pq € A ¥n and

o
oo, - 8491l = [l ~vil — 0
==> 0.v e A z==> Ve 6-1 A
E o *

Now exercise 1.18, lemma 1.23 and the fact that "for any internal space
A, e;l A is also internal, where 8, as defined above, imply that wach
member of pNA belongs to some internal subspace of pNA. Hence pHA is

internal.

Q.E.D.
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LECTURE 2

fxzicmatic Value on pNA

2.1 Introducticn

what will he discussed here is the generalisation of the value
soluticn concept - originally defined for games with finite number of
players by Shapley (1953) - to the games with continuum of players. We
ape not inclined tc go deep inside the philosophical aspect of this
generalization. To get an extensive sccount of it, rcaders should refer
to Shapley and Shubik (€) * specifically chapter 2 and 10, Auman and Shapley
(1) + general introduction, and sections 28, 29, 30. However, we can think
of these game: models with continuum of players as the limiting models for
finite games in the same spirit as in physical sciences, we represent 2 large
number of discrete particles that make up a fluid by a continuous medium.
There are two waye through which one can pass from finite models to the
infinite models - eme is by replicating each type of agents and‘the cther one
is by fracturing each agent into parts. First one leads tgtgames with
countable number of players; whereas -the other way leads to the game models

with continuum of players.

Note that the continuum models could again be of different types.
One possibility is non-atomic games where each player ié iﬁéignificant~- i.e.
has weight zero in infiuencing éhe outcome bf_{-tnﬁe ‘game., Anbther‘pessibility
is continuous games with some players who have positive weights in influencing
the outcome of the game together with a continuum of players of the first
type. Another extreme possibility td the non-atoﬁic games is the games where
each player has positive weigh£ in influencing the outcome., Our basic problem

is : Suppose the"grand coalition’has learned something cocperatively. Now,
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problem is whoiwill get how much? Different solution concepts 2re there

in the _iterature like core, becrgaining set, stable set, Shapley Value -
cach with its own echical view-point behind, Here (_-» we shall restrict
ourselves tc only one solution concept, namely Shapley value. Mathematically,
Shapley Value is, perhaps, most tpactable of all other cooperative solutions;
and it takes into account the power structure of different coalitions®

explicitly in determining the outcome.

For all finite games, Shapiéy has provided the existence of a
unique value operator and a 'nige' formula for it. But for continuum
analogue, there is nc such general result. However, A-S have prpved the
existence of a ﬁhique value operator on quite a big ~hspace ¢f games namely
on bv'NA and have provided with a computational formula for it irnvolving
differential and integral calculus on pNA, an economically very important

subclass of games in bv'NA.

Recently, generalising the ccncept of derivative J.T.Marten
(7) h= ;rovided the existcncs cf value and its computational formula for
more inclusive space than bv'NA.

2.2 The axioms of the Value

Definition 2.1: A game with side payment is a set function.

Let ({) be the group of all automorphisms of (I,{y), (i.e.,
borel isomorphisms of (I, @») onto itself). FEach 0 ¢ @ induces a linear

map 6, of BV onto itself, defined by
(8,v)(S) = v(88) ¥ Se @5.

Definition 2.2: A linear subspace Q of BV is said to be symmetric if
0,0 . Q voe (B -
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pDefinition 2.3: Let Q be a symmetric subspace of BV. The axiomatic value

on Q ir @ mapping ¢ ¢ O - F4 satisfying the following axioms:

(E.2.1) ¢ is linear (linearity)
(E.2.20 o (@) < rAt (positivity)
(E«2.3)  so%° 06806 ¥ 8 O) (symmetry.)

(E.2.4) (o)1) = v(I) (efficiency)
[(E.2.85)% 4 is 2 projection on FA (prejection)]

Now let us briefly explain what these axioms say. 'Linearity'
axiom says that if it is possible physically to play two independent games
simulsaneously by the same set of players then in the combined gsmes they
should get the sum of the pay off of the compongnt games. 'Symmetry' axiom
aayé that the value is not dependent or how the players arie named. Or in
otherwords, the symmetry axiom makeétiﬁlue impresonal. tpffiency’ axiom
makes sure that the value distributes away the total income to its players.
tpositivity' axiom says that if a player can contribute some positive
amount to some coalition, then he should get a positive amount by the value
alloqation. Last axiom means that if the game already is additive, then

it should alsc be the value allocation.

2.3 Existence of Value and its Formula on pNA.

First, let us note that there is no value on BV. For
justification, consider the following:
Example 2.4: (Unanimity game): Let
vw(s) =1 ifs=1
= 0 otherwise.
It is trivial to check that v € BV. Suppose there exists a valuc ¢

on BV. Then p =(¢ v)e FA,

®

Note * (E.2.5) is not nceded for the present analysis. Later on we shall
use it.
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Claim : p = 0 identically. For, first ncte that v is invariant under all
automorphisms, Hence p is zlsc by E.2.3. Synmetry axiom will imply

that u({i})= 0 ¥ i e I if not, then assume i ({i}) = & > 0. Symmetry axiorm

\L'* l .
ensures that u{i} = w{j} . n > gbean positive integer. Let
S = set consisting of n_ clements from I. Then u(S) = iZS w({ih = nGG > 1

contradiction that u is a Finitely additive measure with ufl) = 1.

mm,lﬂ:S:{O,lﬁ].'mefdumdm;&ﬁmmmmmm

Ce(x) = %-x if x-e [0, 1/2]
= x - %—(x-l] if x ¢ (%-,l]
we have 8 [0, 31 = [0, §1. Hence w0, Iy = o, .

.. . 2
Similarly, one can show easily that w([0, %J) = u([%-, Eﬂ). Hence

w(8) = w0, 33+ ulE, 21 =2 w(8) ==>u(s)

T 0. Similarly, w(fF ,11) = 0.

Hence u(I) = 0. . Conmtradiction to E.2.4.

Note that the game in example 2.4 is not non-atomic. Sc one
may hope that all non-atomic games in BV have value. The following exercise

gives the negative answer.

Exercise 2.5: Let

v(8) = 1 if I-S is a finite set
= 0 ctherwise.

Show that v is a non—atomichﬁv-game and therc is wo value for it.

But life is not so bad. There is some 'important' spaces
on which value exists. One such space is what will be told now.

Let pNA be the closed subspace of BV generated by all powers
of NA' measures. pNA is a symmetric subspace. A game of the form fou
where u € (NA)m and f is a real valued function on R(u) with f(0) = 0,

is called vector measure game. The fcllowing theorem assures the existence

of value on pNA.
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Theorem 2.6 (B, in A-S): (i) There exists 2 unique value.¢ on pNA.

Furtter {1i) let u e (HA)m and f ¢ Cl(R(u)) with £(0) = 0. Then fcu e pNA
and

{£.2.6) ¢ (Fop)(S) =Of fu(s)(tu(I))dt,

where R(p) is the ronge of u and fuié)‘directional derivative of f in the
direction u(S).
Remark 2,7: (lR) before proving this theorem, we have to establish a secries
of results., A complete characterisation of the vector measure games in pNA
is done in lecture U,

(QR) The analogue of the formula E.2.6 for other general

games in pNA will be done in the next lecture.

Proof of the Theorem 2.6:

[ls] First we shall prove the first part of (ii) in several steps.

1st part of theorem (ii) is true if f is a pelynomials in m variables.

Proof: Note the following identity : Let k > O be an integer and

Riveeen % € ﬁQ . Then,

k k
k! x seebsy = (X tasatx ) - z (X teoetx -xo)
1 ®x 1 k 1diek Y k¥4
.P.7)
(-2 D) (X +X Foeotr, = (X,+x ))k - een
1727 %k |

1<i<izk
i

Now let fon = I a, uil....umm ,u e (NA)™ and £(0) = 0. By E.2.7

iieeediy
and the fact that any W € NA can be decompcsed into u = u+ - u , both
u+, wooe NA+, (E.g. Hahn decomposition) it follows that fou e pNAa.
[28] The polynomials are dense in Cl(R(u)) w.r.t. II.I]l norm as

definadbelow. w.l.g. (for justification see A-S pp.42) we assume

dim R(u) = m for y € )™ and ||fl|o = max | £(x)|, define

m xeR(p)
letty = et s Bl

where fi(x) in the definition ofl!fil|o is the continucus extensicn of the
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partial derivatives fi from the interior of R(u) to its boundgry.
Proof: Se= (8) p.A8. They show that any fe Ck(R), where R is an
n-dimensicnal cube .an be approximated in I;.I}O by a sequence of
polynomials {pn} s.t.

r
5 p [
i J

X . e s s OX.

1 J

80, in particular, extending our £ form R(u) which is a compact ccnvex
m . o s S
subset of ﬁz to a cube in an arbitrary way, we establish 2.

[36] Let us fix a p e (NA)" arbitrarily. Then || .||l-convergence

of set functions of the form fou , f € Cl(R(u)) with £(0) = 0 ===>||

gy

convergence i.e. Jc > 0 s.t. ||.||gy < cll.fl;-

Proof: Let VF be the gradient vector of f in the interior of R(u).
Censider a chain @ : ¢ = 8 C S, C ... QS =1Is.t. u(Si) e Int R(p) ¥i

except possibly the first and the last. Now,
T
vl L1 fou (s,,) - fou (s,)]

j=o

n

n
= S.,.-S.) w¥(u(s,) + o, u(S, .-S5.)) for some
Jzo M8 541783 (W(Sg) + 85 u(Sy4y755)) -

0 < ej <1 ¥ 3j (By mean value thecrem)

A

% ? “i(sj+l'sj)llf‘|l

X 450 is1 i=1

m
£y I wy

A

m
<, 5 dlwglls v
i=1

Take ¢ =

| a5

||ui|| and appeal to proposition 1.4 complets 3%,
1

S . . .
{u7] 1st part of (ii) of the theorem is true when f is of the form

fou ; fe Cl(R(u)), u E(NA)m with £(0) = 0. Because of 28, fou 1is the
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Il.lll-limit point of a sequence of polynomials in m=-variables. Hence it is

the II limit point of the scquence andhence fo upe pNA.

|
'IIBV
Definition 2.8: Let u € (NA)m. A neighbourhood in R(u) of the diagonal

[O,p (I)] is the set
N(u,e) = {u(s) ]| w(s) -t wI1)]] < e for some tre [0,1], S ¢ > ve>0}
Let Q= {v e pNA: Fm>0, pe(NA)™, fe CH(R(n)) with £(0) = 0 @ve.W(u;5) €0 s.t.

v(8) = fou(S) whenever u(S) e N(u,e)}
For v € Q, define
(£.2.8) a(v)(S) = f fu(S)('I:u(I))dt,

where p and f are 2s in the definition of v in Q, which are not necessarily
unique,

[55] ¢v is countably additive. ¢ is a well defined linear cperator
on Q with |{e(wd¥l < |lv]l . 1In fact ||¢|]= 1 on Q.

Proof: See A-S Pp. Lu4-U46.

[BS] Q is a dense subspace of pNA.
Proof: Suppose Vis Vo € Q. To show vl+v2 e Q. HNow, v, € Q ====> there
——— £

m
. . | 1

Q. A k . & M . . . v s Ls
exist m. >0, uy e(NA)Y 7, fi e C (R(ul)) and Nl(ul,el), e; > ¢ s.t
S e N(ui,ei) ===> vi(S) = fio ui(S), vi=1l,2,

] £

Define u = ( } f = gpoch where h = ) g = f1+f°’
, . 2

o £,

N C:,Nl(ul, el) pY4 N2(u2, 62).
It is now trivial that v_+v. € Q. It's trivial to show that a ¢ ﬂ?

12
v € Q ===> av e'Q. Now note that Q contains all powers of NA measures
hence Gs is proved.
£7°3 since |}#¢]]= 1 on Q, a dense subspace cf pNA and since by
proposition 1.7 FA is complete, ¢ can be extended uniquely to Q = pN&,

preserving the norm.
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(871 Let ¢ : pNA*> TFA be = linear map satisfying:

1 el = 4
Gy eG™ = u ¥ weNA
Then ¢ is a value on pNA.
: 1
Proof: (8.1)0: (E.2.3): Let £(x) = xn and v = fou , pu e NA". Then for each

e ® > UgM € NAl. Hence

98, v = ¢lfe Bul) = Bgu = Oy oV.

oA -

Now since both 0, and ¢ are cortinuous on pNA and since ¢6, - Upe = 0
for all games in the spenning class hence alsc equal to zero on pNA. Thus
¢ satisfies (E.2.3).

(8.2)%: (E.2.4): The mapping v v (¢v(I) - v(I))is 3 continucus linear
mapping that vanishes on the spauning class of pNA hence it vanishes

identically cn pNA. Hence E.2.4.

C . . . . . s
(8.3)° (E.2.2): Suppose v in pNA 1s monotonlc and suppose ¢ is not positive

then o S -@) s.t, (6v)(S) < 0. Then

fv

[Covd(s)] + [(ewd(D) - (2 ()|

(Taking @ : ¢ < S < 1)

v

[v(1) - (ev)(8)] (by (8.2)° above)

v(I) = (sv)(8) > v(I) (contradiction!)
Thus v € pNA+ ===> ¢V € FA+.

<
(8.4)° (E.2.1): gy 5~ . Hence 8>,

[98] Observe that if v= uk, e NAl.J then the formula E.2.8 yields

(ov)(S) = w(s) f %z-(tk)dt = u(s).

Hence by BS above ¢ is indeed a value on pNA.
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So it remains to prove the uniqueness. To prove it, let us
- oS
observe the converse of 8 .
S n . hps
1071 Let ¢ Fe a value -n pNA. Then, o(p) =p ¥ u e Na.

Proof: Left as an exercise to the reader, see for generalised version

A-S, p. 38, propositicn 6.1.

[115] Let Q be an internal subspace of BY and let ¢ be & positive
linear operator from ( into BV cbeying the normalisation condition E.2.4
Then|fo]] <1

Proof: Suppose v € Q+.

Hovil = ¢v(D) Since ¢ is positive
= w(I) = by E.2.4.
= ||V|i since v e Q+

Now since Q is internal, for any v € Q, and given ¢ > 0 there exist u and

+
w £ Q s.t.

vl + e 2 Hull + Hwll and

vVEu- W,
Now, [levl] = Uletuso ] < Mol + Hewll = Hlafl + Hull < Thvll + e
Since ¢ is arbitrary lls is proved.

12S below completes the uniqueness proof.
[lQS] By linearity of ¢ and by 10S one ensures the uniqueness cf the
value operator on the set of all pclynomials in NA measures which is dense
in pNA. How llS say that ¢ is continuous on pNA. Hence it must be
unique on the whole of pNA.

Q.E.D‘
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[y
Remark 2.9: Let P = space of all polynomials in NA-measures. 1° abcve

implies that P is same as the space of all linear combinaticns of powers
1 - . R .
cf NA -mecasures. Thus pNA = p. It is much easier to prove the existence

cf unique value on P than on pNA., See A~S note 2, p. 54,



LECTURL 3

Genspalized Sets and Value formula for General Games in pNA

3.1 Introduction:

The value formula E.2.6 in the previous lecturs holas for
those games only ir pNA for which there exists a non-atomic vectoy measure
e (8™ s.+. in some cempact convex neighbourhcod in R(u) of the Aiagoneal
the game is representable by a continucusly differentiable functicn. To
provide formula for general games in pHA, Aumenn and Shapley proceed by
generalising the notion of set, what are called the idezl sets; the cxdinery
sets will be identified with®scme” types of idezl sets. Then they extend
the set ;functions from the O-algebra of ordénary sets to the class of
ideal sets and then they provide a formula (which is the extension of E.2.8
when properly identified) in terms of the directional derivatives of these

extended set functicns. Let us proceed v, systematically:

2,2 Id 21 Set Functions on the Lattice of ideal Sets

Definition 3.1: An ideal set £ is a measurable function from (ISGB ) to

(I, 43)..

We can attach an intuitive meaning to these ideal sets as
follows: an ideal set f specifies the degree, f(x), 0 <<f(x) < 1 with
which the point % from I belongs to a set. An ordinary set S e G})is
identified by XS'  Let

B(I, )

space of all bounded real valued measurable
functions on (I, (%)

Bl(I,(Zg) = Space cf all ideal sets.
Note that B(I, @) :)Bl(l,@_,) > @ .

i

{xg : 5 ¢ Gy}
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Sometimes we will denote B(I,{}) and Bl{I,QB) simply by B and B,

ficpeC ively. Note elsc thet U is a linear space over the real field.

i

On Bl, let us define the fellowirg binary operaticns : fer each
f.g, € B »

£ < g <===> f(x) < g(x) Yxel

fVvg #= max (f,g)

fAg = min (f,g)

It's very easy tc check that Bl with < V, A is a distributive lattice
but not complemented. Had it been complemented alsc then the set of ideal
sets-Bi—would have been isomorphig to the Boolean algebra cf all cpen
closed subsets of a totally disconnected compact Hansdorff space by Sten's

Representaticn Theorem; and hence nothing new could have been . . achieved,

But € is a distributive and complemented sub-lattice of it.

Let us define two more operations on Bl whenever defined

(f + g)(x) = £(x) + g(x)

(uf)(x) o £(.)

i

for every f,g € B. @ > o real number and ¥ % e I.
4

Let ~us denote by RS

1= X1
0 = -
X
S, we havé achieved the following analogue:
On ordinary sets i.e.@%, on ideal sets, i.e. Bl
A,B are the elements f,g are the elements
¢ 0
1

[

> N
- <
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Definition 3.2 An ideal set function is & maping v: B1+ ﬁg with ;(O) = 0.

Definiticn 3.3. An ideal set funetion v is said tc be monoteonic if

¥ f,z € Bl with £ < ¢ ===> v(f) < v(~) . v ig s2id to be of bounded
variation if there exist monotonic ideal set ;functicns u and w s.t.

v=u- w. Let

IBV = set of all ideal set ;functions of bounded -variations.

Define, for each v ¢ IBV,

II;I'IBV = inf {E(XT)+§(XI) : u and w are monctonic ideal set
- functions and v=vu-w}

One, at once, varifies that |]. is indeed a norm on IBV. 1In natural

HIBV
way, one can extend the definition of chain and many other concepts,
originally developed fcr ordinary set functioms, and prove the znalogues of

different results like propositions 1.4,1.6 etc.
- We shall equip B = B(I, T}) with two topologies. Let

[NA] = {§(f) = /fdu : fe B and y e NA}

Note that W's in [NAJ are in fact lineer functionals.

Definition3.4. The NA-topolcgy on B is the [NAl-weak topolegy, i.2., the
weakest topology on B such that all linear functicnals in [NA] are continucus
with respect to usual topology on TR . The DNA topology on B is the [NAJ-
weak topology w.r.t the discrete tupology cn “2 .

In this lecture, we j;shall use only NA-topolegy unless ctherwise
stated; DNA-topology will be used in a later lecture for mofeiéeﬁeral results

due to Marten (7).

Proposition 3.5. 63 is DNA-dense in B, and hence, in particuler, it is

NA-cdense in B, also.

1

Proof: Let us first extend the non-atomic measures from q% to Bl in the

obvious way as follows:

N
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(E.3.1) ()

S f£du
I

u(s), ¥ S ¢ 63 . Pix f ¢ Bl' Note that

ficte that nlx S)

0 < Wy <1, heneo by Lyapunov's thecrem therc exnicts S ¢ GES s.t.

u(s) = u(x.) = T(f). Now, sub-basis elements for DNA-topology are

S

N(E) = FGR(E) = {g e Br WM(e) = WEOY, ¥ E e B ueih

Note that N(f) contains a uxg for some § ¢ as .
Q.E.D.
(E.3.1) above is the extension of a measure from 6% to Bl.
Now, the following is an extension for general set functions. Or in
otherwords, the Following is the extensicn of the definition E.3.1 from

set of non-atomic measures tc the set of all set functions.

Definition 3.6, Lot Q be a linear subspace cf BV. The following mepping

"M from Q to IBV satisfying following will be called an extension:

(E.3.2) (qu + Bw) = ou + 8w
(E.3.3) W =V .w
(E.3.%) W(fy = f fan
(E.3.4) ue Qo ===>% e 1BV

1 The ideal se¢t functicn
¥ is called the extension of v, Note that if Q is an algebra, Then

> "\0 . 3 - . - .
' is a homepphlcal imbedding of Q into IBV with extra properties that

1y

whenever u,w ¢ Q, a,fB ¢ i;l , MweNAand f ¢ B

t

measures are identified with 'extended measures' jp DV and monctonic set

functions are identified with extended montonic set functiens in IBV.

Let us introduce another non-topological concept jp Bl:
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pDefinition 3.7: A real valued function, w, defined on Bl or on any subset

of Bl o saia to be uniforniy comtinuous if, for civen € > 0, there exist

a vector u of NA meesures and a § > 0, s.t. ¥ £,0 e dom{w),
Hr(g-g)au]| < 8 ===> lw(E)-w(g)| < e,

where Il.l‘ above is the 'max' norm in ﬁzn, n= no. of components in M .

Theorem 3.8: (Theorem G of A-8). There exists a -unique extension for Q=pNA.-

Proof: We shall prove it ;in several steps.

S ' . . . .
£17] Each v in pN& is uniformly continuous on G%.

S . . : . ; :
Pro6f: (1.1) I1f v € N 4 then v is uniformly continuous on 62;, which
foilows from definiticn of uniform continuity.

S . . PR

(1.2)° If u and w ave uniformly continuous g0 are utw and 7.
S S : . . IR
Now 1.1°, 1.2" together with £.3.2 and E.8.3 imply that all polynemizls in
NA-measures, are uniformly continuous.
S . s Nt

(1.3)° To show now that any general game, Vv, 1N pNA is u.c.

(i€ m)v continucus): Since solynomials in NA measures are denge in pNA

given € >0, E;VE , = polynomial in NA measures S.t.

v = v i ¢

>4

For any two S,T € ({3 , we have

(E.3.5) 1(v-v€)(5) - (v-ve)(T)‘ < 3(v—v€)(s)| + |(v—v€)(T)|

iA

Hvev {1+ v 1]

I A

g/u + /b = €/2,

Now since v is usc. on (), there exists a vector cf NA-measures

and a 6 > 0 s.t. ¥ ST € (3

(E.3.8) lu(sy - w(r)} < 8 ====> lv (8) - v (T)| < e/2.

py (E.3.6) and (E.3.5),
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~u(s) - um| <8 === |v(8) - v(D] < | (v=v )(S) - {(v=v T}
+ |v (8) - v (T)]
€ €

< /2 + ed2 = ¢
This completes the proof of lS.
[253 Let v £ pNA., We extend v from gisto a uniformly continucus

function v on Bl in the following way:

Let S 1/n. Let p(n) and ép be respectively the vector of

It

measures and &'s corresponding to €, in the definition of wniform continuity

of v. Let g e B We want to define v(g). We can choose (because of

1
- * ',\ - \ = = pr
proposition 3.5), for each n, Sn s, € (ES such that

||.,r(xsn - g)d e || <873

5 . s
(2.1)": {v(Sn)} is a Cauchy sequence. To prove it we can assume wW.l.(.

)

k)

(How?) that 6n¢ and for m > n all the co-ordinates of p(n are alsc the

m)

. ™ A . . (m) . NPT
coordinates of u( ) (Thus in general, the dimenslon cf u is % dimension

(
ﬁumh.memRithnwsm&fwmln

, e (myy L on On
.{I(XS ‘E)(~L1 ilf_ HI(XS -g)du H<—3—‘—'§.
m m
Hence,
(n) (n) - ) (n)yy . an <
s ) = w s = (g = xg 4 ¥ | <= < ¢,
m n
=== (S 2‘. %Y
====> Iv(Sm) - w(Sn)|< =~ ¥n by u.c. of v on (X (%3
) S
Hence (2.1).
Define
(E.3.7) () = 1im  v(s®)
o n
(2.2)8: v defined in (E.3.7) is u.c. on El'
$
Proof: Fix n s.t. %- < eg/2., Set 6= —%-, u = u(n). Suppose

| | £CE-g)au|| < 6 We must show that
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|5¢e) - (el >4e

In (%) above, let m > «, we get

(£.3.8) 15y - s < am < 2/
Similerly,
(E.3.9) 5(6) - v(sD)] < /3

On the otherhand,

£ . ,
1o = w1 < 118 xgf 2l [1se x vl

n
+l|f(f-g)du!l< SD =4

Therefore,

‘ ( ('f g

(E.3.10) |v(an) - v(Sn)| < 1/n <¢€/3

(E.3.8), (E.3.9), and (E.3.1¢) ====> |v(£) - v(g)| < e hence (2;2)3.

5 - . .
(2.2) ==%v is ccontinuous on Bl w.r.t. NA-tocpolouy.

S - o . S . . . ; . -
(371 , v defined dn 2~ is an extenslon of v, i.2. the mapplng v > V

from pNa to IBV satisfies all (£.3.1) through (E.3.4). To prove these
first note that

;(XS> + v{3) ¥ See (13

Now (ov tew) - (av + BW), 9w - vw and u - JS(.)du =are all centinuous
I
extensions of 0 and henc: must vanish identically. It remains tc establish

(E.3.4)., To establish it, suppose g,:8, € Bl and g, > €5 and let
v E (pNA)++. Since v is u.C., given € > 0, ;3 § > 0 and some vector of Ni

measures U s.t.

| r(e-g)d ul| < 8 ====> |5() - ¥(@)| < e.

Now, substitute £ = Xp and g = €y Then
i

H r(g-g)aul] = o.



Since by Lyzpunov's Theorem, g, > &, 555> there exist Tl’T°9 1, Tl s.t.
L T B & £
w(T.) = [, 24 u , i=1,2.
1 i

Hence

'G(XT.) - ;(gi)l = Iv(Ti) - G(gi)l < g , 1= 1.2,

1

Now

lv(r)) = ¥z - v(T) + Vg < 2 e

Since, v is monotonic, and TQ':b Tl, we have

§(g2) - ;(gl) > =2 , ¢ is .. arbitravy. Hence (E.3.4)

fiow, we shall prove the uniqueness of such an extension.

S'I . . . - ®
{3 The mapping ' ' satisfying E.8.1 through E.3.4 on pNA Is unigue:

To prove it:

g - ] .
(4.1)°: (E.3.1) ====> for v ¢ NA, v is unique, which together with (£.3.2) &
(E.3.3) imply the uniqueness of the extension map ' ! for all polynomials

in NA measures. Now, it is enough to show:

S . . s s .
(4.2)7: Tue map ' ': BV - IBV is comtlnuous.
- +
Proof: 1st note that V(XI)/V(I) < K for some K, ¥ v e (pHA) . Now,

since pNA is internal, for any v € pNA, there exist monotonic u and w s.t.

u(l) + w(I)

v = u-w and ||v|] > 5 .

Now,

vl

Ha-wl] < Tal) + Tsl] = atcpswlxy) by (E.3.4)

SResLesl PWINY Hence (4.2)°.

IA

Q.E.D.
The following corollaries are the by products of the proof of the above

theorem.
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orcllars .91 v = I 5 { .
Corclilavy 3.9 V(XS) v(s) ¥s5e 7

Proof: Take § =5 ¥n in (E.3.7)

L

Corollary 3.10: lhe extension wap v & ¥ is a continuous map from

(PNA’H ! ! BV) to (IBV, ' I I | IBV).

S
Proof: See 4,

Corollary 3.11: I|;llIBV = HVHBV'

Prcof: Suppose v ¢ pNA. Since pNA is internal, givem e > G, there
. +
exists u,w & (pNA) s.t.
v = u~w

and w(I) + w(I) < ||vl} +e

~~
m
.
w
N
=
h g
1
i
1l
]
el
jal)

nd w are monotenic and (E.3.2) ===> v = u-w. Now,

51 gy =81y < a1 gy = 80 + )

() + w(D) < |lvi] + e

% -
Since ¢ is arbitrary and since %lv!!IBV Z-livl‘BV always, we nave

established 3.11.

Corollary 8.12: v is continﬁbus on B1 w.r.t. NA-topology. This follows

from uniform centinuity of v o B, -

Remark 3.13: (1) Thus the extension mapping is an isometric iscmorphism of
the Banach algebra into the Banach algebra-IBV with further property that it
is positive and sending measures tc extended measures.

(25 Extepsion possibilities for other more inclusive spaces than
pNA should be also studied, though we do nct need it at present.

Exercise 3.14: Let f :'ﬂQ._a f;l be continucus. Then show that

fov = fov ¥ v & pNA.
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Let us dencte by

=

(E.3.11) av(t,8) = — vit Xp " @)

[&]

where © 2. [0,1) end the deriviiive is at 1 = 0. 5o 9v{(t,5) is the
directional derivative of v at Xy in the direction Xg* Note that for

ki
+ = fcu, where p is a vector of HA measures and £ ¢ ¢ (R(p)) with £(0) = 0.

av(t,s) = fu(s)(t,u(l)).

The following thecrem ensures the existence of above derivative for and

seneralises the value formula te all games in pNA:

Theorem 2.15: (Theorem H of A-S) For each v in pNA and each § € GE) )
the directional derivatives 3v(t,S) exists a.e.{)) and belong tc¢ Ll(k)
and if ¢ is the axiomatic value cn pNA then

(E.3.12) (6v)(S) = S av(t,8)d alt),
I

wheres A is the Lebesgue measure on (I,@®>.

Proof: Define, fcr each v, ’
X, foaxe - vitxg) V(tx, + axg)=vAtxy)
E(6) = Tin ——s Ly ———; -

o> O o> O
We have to show that Ev(t) = 0 2.e.t{)) and av(t,S) € Ll(x). T~ that end,

let us fix S ¢ GE) , and define for each v € pHA

- + - T(tx. + oxe) - vltxo)
Hv(e,9)f] = 1im L S L
o> O o

- - +
Lemma 3.16: ‘Bv(t,S)l+ € Ll(A) and S Pv(t,8)] ax(t) < |{vi]
I
Proct  We shall prove it in several steps:

a1y - . '

(3.16:1)%:  139(¢,8)]" is measurable, for, by Corcllary 3.12,

= . : . . e tas - +
v(tx; * oxg) is continuous ina . Sc, in the definition of lav(t,8)|

. S.
one can let a vary over rationals and hence (3.16.1)
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S L £2 L] 1 I s - ha
(3.16.2) : Lemma is true for all monctonic v's. 1o prove it cbserve thet
since + acnotenic ===» v is alsc munctonic,

g(th +axq) - G(th) G((’C+a)xI) - G(txl)

a — a
Now, let g{t) = ;(txl). S¢ g(t) is monctonie in t and hence a.c. differen-

tiable. So

v(ty, + ax.)- v(tx,) . e
o< TIn I S I < izﬁ'o L(t+a)ag(t)
o> O @ q
= g'(t) a.e.t
. - +
ice. 0 < | av(t,8)]7 < glt) a.e.t
Now [ g'(t)dt < g(1)-g(0) = v(I) = |l" | |by the monctonicity <f g(t).

Hence (3.16.2)8.

(3.16.3)5: We shall ncw prove the lemma for general v in pNA. Given

. +
¢ > 0, there exist u,w ¢ (pKA)" s.t. v=u-w and ||v|]] + ¢ 2

[fa]]+ !|w|] . By thecrem 3.8 ~ = u-w, and hence
la5¢e,9) | < Joute,)| T + autt,9)|"
Sc by (3.16.2)8,
rlavee,®) |t ane) <flull + [lwl] < Iv]] +e
Since € > O is arbitrary, the proof cf the lemma 3.16 is complete.
To continue the pro@f of the theorem 3.15, note that

0 < E () < 2 [a%(t,9)]".

E, = é-Ev(t) d a(t)

Ev satdsfies the following:
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(i) Ev 5_2 ||v||

i1, I S sir T + © {t
(ii) B, <E ¥ E » since Ev+w( ) f.Ev(t) w( )

TR

(iii) EV =0 . % v & piA.

Te establish (iii) first note that B = 0 if v ='un, ue NA. and hence
by (ii) above E_= 0 fer all polynomials in NA measufes. To show for
gﬁncral v in pNi, let, for givem g > 0, Va be a polynomial in NA -
nieasures s.t. i -

IREATIRE

; ‘ x . o
Now by (ii) and (i) above B <E_+ EV__VEi’EV_VE
2] |v-v 2
<ol |l <2 e

Since ¢ > O is arbitravy, (iii) is established.

Hew (iii) implies Ev(t) - 0 a.c. () and hence v(t,S) exists
a.c. and whenever it exists, we have
— - - +
Qav(taa)‘ = !3v(t,s)|

and hence by lemma 3.16 above we have

sfov(t,8)|a a5 - ||v||and hence av(t,8) ¢ Ll(x)
I = .
New, we shall deduce (E.3.12):
For each S ¢ q%, define the mapping 'Yy? DNA & 1?2 by .
v v = f ov(t,8)dt
Ncte that Vg is a bounded linear functional on pNA and

SRV o= %v =0 ¥ v o= fop » s.te y is a vector cf HA measures
1P

and f ¢ Cl(R(u)) with £(0) = 0, where %’SV = (¢v)(S). Hence, in particular

g = w,o= 0 for all .olynomials in NA measures. Now, since - is
S - . ¥g7e¢s

centinuous and he set of polynomials in NA measure arc dense in pNA, we

hwewq—¢6i8i&mﬁcﬂiyofmvalgamsian\deSy
| Q.E.D.



Remark 3.17: Ncte that if 5 in TBV has = Fréchet derivative Dv at tyy for
some t ¢ (€,1) then -

SR T

P IV,
gvit,a

i
<
~
t

r ¥ ixgdlg=o

i

<Dv(t, XI)’ Xg> >

where Dv(t XI) is a bounded linear functicnal on Banach space B(I, })

with sup norm and <Dv(t xp)»  Xg is its value at xg-

(E.3.13) shows that for that t.for which DV exists, 3v(t,8) is
4 peasure on ({3 . Now the natural questions that come *o cne's miné are:
Fer which v's the Fréchet derivative exists? Does there exist t in (0,1)
s.t. ov(t,S) exists for all S E{ES? If.yes, then these t's ccnstitute how

auch of I and for which v'e? Some partial answers are summarised in the

following :
4

Preposition 3.18: Let v e piA. Then for all most all toe (0,1), the

following lold
(i) the extensicn v has o rrechet derivetive Dv at t X1

(ii) 8v{t,S) existe fer 211 S ¢ ()

(iii) Let BtQ(S) = ov(t,5). Then atf is 4 HA necsure, and for
all f e Bl.
<pw(t x.), £> = [ £davV
1 : I t

Proof: See A-5 p. 157.



LECTURE L

Characterisation oi some games in pNA

.1 Iptrcduction

pNA is & very important subspace of BV from the view peint of
eccnomic applications as well as that of having many strong results like
formula for value in terms of differentials and integrals of certain
functicns. Under fairly general conditions, the set functions derived from
exchange economies with transferable utilities [for non transferable utility
models, same theory goes through by aggregating indiQidual utilities by some
weighting factors Mt), t € I and the corresponding value is called A-value.
For more details see (9)] or from production economiesgboth with the
continuam of traders, have very interesting properties like (i) they ~re
in pHA, (ii) there is a unique point in the corc of these games and this
unique point coincides with the valuei this point is also competitive

equilibriun:.

Aumann end Shapley have given a nice value formula (E.2.6)
for vector weasure g mes fou in pNA. In fact, the games of this form where
f is continuous, concave and homogenecus of degree 1 on R(u) arisc from
market games of finite type, where the utility functions are not pecessarily

differentiable (See (11)). So, it is important to investi gte what games

of the form fou are in pNA. Thecrem 4.2 will give a complete characterisation.’

4,2 Some notations and ccncepts

)™

= linear space of m-vector of NA measures.

m
Define the norm cn (NA)" by, for each U e (na)™ I|pl‘m = ) l}ui iFV’
a0 '

where u = (U,s ... ). Define B(u) and B{u,e) for each € > 0 by
1 m
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“B(uy = {n e )" 1 R(n) = R(W}

B(u,e)=in e )" jlu-all  <¢

Al‘r,

Tivw o u.e (ﬁ&l)m and - reot Function £ oon R(M) with £(6) = 0. Define an
operator
1 o, LI~ e, ) by

Tf(n) =Fon ¥ ne B(u).

Definition 4.1. £ is said to be continucus at ¥ if Tf is continucus at U

Theorem 4,2: (Tauman): Let ﬁ € (NAl)m and £ : R(x) =~ with £(0) = 0.

Then

fou & pNA <===> £ is continucus at ¥ .

! he .
Proof: We shall give here cnly the idea oprroof. For details, see (10).

{<===1: Suppose f is continuous at M . Assume R(u) is of full Aimensicn.
Different steps are as follows: First emooth £(x) by averaging it cver

a small cube ¢ of volume am, very near to the peint x in R (1), for each

% € R.#) in the follcowing way:

For each 0:< & < 1 and x ex R (ul.

) i .
(E.4.1) £ (x) = fﬁ £ Of((1-8)x + 8y) a A(y) - % S £(8y) axy)
a yee a | YeT
s . $ .
where A is th: Lebesgue measure on ﬂzm. Compare with g (x) in the proct

of proposition 1.,1¢. One has to varify that the above functicn f5(x) is
well-defined. Next step <consists of proving that f(S > Cl(R(u)). Same
type of argument as used in proving gé belongs to Cl(R(u)) in the proof

cf proposition 1.19. Once, it is proved, theorem 2.6(ii) ‘implies that

féou e pNA. Now, f is continuous at u and some other results ccoked from
this hypothesis enable cne to approximate fou by fsou as § >~ 0 in BV norm.

Now, since pNA is closed in BV norm, fou ¢ pHA.



& Jie .
[===>] rart: Suppose for some v € (N[{)”5 fou € plA. Purpose is to shcew

that f is continuous at p » Different steps are:

R
o . . 5 ~ g S = L o
(4.2.1) fop € pua ===> there exists a i J of polynowials in HNa

n
measures,say W, s.t.

/

||pn ou, - foullgy *-0asn>e
Define
R= {x ¢ R(u, w) 2 £y (x) e el

whare tl(x) is the projection of x on R(py)and & is as defiued in the first

part. On Rn’ choose a measure XI s.t. for each 0< § < 1.
1

Sixy = 5 £k + 8t () d Ay - Sa T A )
n - 1 n 1 1
yeRn yeRn

. § §
defined on R(u) is independent of n(this is possible!) Set f = fn .
For each 0 < § < 1, note that fé € Cl(R(p)). Similarly, for each n anc

0 <6 < 1, we defined pi on R(yu ) by

P é < - S K Al 3 - r . Ea N 3 -
pn(x) = LT pn((l—a)x + St2(y))¢ An(y) Sa pn(énz(j))J Bn(y)
yaRn yeRn

where t,(y) is the projection of y on R,
o § n -6 : e . -
(4.2.,2)7: Ilpn op - f oulti 5> 0 wuniformly in 0 < & < 1.

(4.2.3)%: for each 3, |lp2 oy - p © pnllBV >0 as & - 0.

Q n
(4,2.4)7: |‘pn o - fOu||BV ~ 0 asn =
(4.2.2)%, (4.2.3)° and (4.2.4)° imply

@]
(4.2.5) Hf‘sou _ fOUIl > 0 as 6 > 0
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o - . . .. . . 1 .
(4,2.6) : Since polyncmials in m-vaprizbles are dense 11 co(Rr{y)) (Scz,
L - -
27, pp. 17 Y, thore ayists a seJuencs {gn} ot polynomlals approximating

) .
£ and henc. f,due 0 (E.2.5) i.e.

l| fou - gnoul\ > 0 as n 7 .

o W . . . " = 1
(4.2.7) : Any polyncmials p on R(yp) is continuous follows frow the
following cbservations @

(i) for every n eB(V) |\fon}iBV = ‘\fuvl\Bv

(ii) for every N € B{u,0),
llfuu - fon]lBV ijlfou - gnou|lEV +\tgnou - gnon !BV
+||gnon - fon‘l BV >0 as n >« and
§ ~ 0

G.E.D.

4.3 Hotes: Aumann and Shapley (1) have given & necessay an. sufficient

condition for scalar measure games to be in pNA, namely fou ¢ piA <===> ©
is absolutely continuous on I, where U € NAl‘and £ i1 + 1R witn F(0) = 0
A char?ucerisatign for tb&kcpse shen u € NA has been given by E. Kchlbery
(12) in this compection alsc see (1). p. 74, propesition g.1. Tﬁocrem

2.6 (Theorem B cf A-5) provides 2 sufficient condition for vectoy measure

games to be in pNa. But theorem 4,2 gives a complate chapacterisation of

e
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