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Summary. We present an overlapping generations model of endogenous fertility 
and growth. The cost of child rearing and the effect of population size on total factor 
productivity determine the dynamics of competitive equilibrium path of our model. 
The non-linear dynamics of the model generates a plethora of outcomes (depending 
on the functional forms, parameters and initial conditions) that include not only 
the neo-classical steady state with exponential growth of population with constant 
per capita income and consumption, but also growth paths which do not converge 
to a steady state and are even chaotic. Exponential, and even super exponential, 
growth of per capita output are possible in some cases. 

1. Introduction 

The consequences of private reproduction and capital (physical and human) 
accumulation decisions to long-run economic development have been the focus of 
research of a number of scholars in recent years (National Research Council [1986], 
Nerlove [1987], and Raut [1985, 1991] ). In the earlier literature on growth and 
development, household formation, schooling, fertility and labor force participation 
decisions of households, their mortality experience and the resulting rate of 
population and labor force growth were assumed to be exogenous. The recent 
literature, in contrast, explicitly recognizes their endogeneity. In addition, greater 
emphasis is placed on human as contrasted with physical capital in the growth 
process. Another strand of recent literature (Lucas [1988] and Romer [1986] ) 
besides endogenizing growth, obtains sustained growth in per worker output and 
consumption, primarily by generating increasing scale economies in aggregate 
production. 

Almost all recent contributions to endogenous growth theory focus on models 
for which an equilibrium steady state growth path exists, although it need not be 
unique or independent of initial condition. Analytical attention is focused almost 
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exclusively on the properties of steady-state paths. In contrast, our model is not 
geared to generating balanced growth. In fact, the non-linear dynamics of the model 
generates a plethora of outcomes (depending on the functional forms, parameters 
and initial conditions) that include not only the neo-classical steady state with 
exponential growth of population with constant per capita income and consump
tion, but also growth paths which do not converge to a steady state and are even 
chaotic. Per capita output grows exponentially (and super exponentially) in some 
economies. 

In section 2, we present our basic overlapping generations economy and derive 
a system of difference equations whose solution yields the equilibrium path of the 
underlying economy. Dynamic properties of the equilibrium path in our model 
depends on the nature of child rearing cost and the way population size affects total 
factor productivity. In section 3, assuming child rearing cost to be constant over 
time, we characterize the equilibrium paths of our economy as a solution of 
one-dimensional iterative maps, and study the complex dynamics of such a system. 
In section 4, we analyze dynamics of economies with more general child rearing 
cost functions. 

2. Basic model 

The economy produces a single commodity which can be consumed or accumulated. 
The production function for this commodity is given by 

(1) 

where K1 is the stock of capital and L1 is the size of working population in period 
t; G (L1 ) represents Hicks-neutral total factor productivity that depends on the size 
of the working population. 

Assumption A:l. F is a concave, homogeneous of degree 1 function of class C2 and 
satisfies Inada condition: 

where f (k)  = F(k, 1). 

lim f'(k )  = 0, and lim f'(k)  = oo k----.co k-"'oo 

Production is organized in competitive firms which maximize profit in each 
period given factor prices. Under assumption A:l and with G (L1 ) as an externality 
this implies that 

W1 = G (L1) [f (k1 )- kJ' (k1 ) ] = G (L1 )w (k1 ) 
qt = G (L1 ) f'(k1 ) = G (L1 )q(k1) 

(2) 

(3) 

where, W1 is the wage rate and q1 is rental per unit of capital in period t, both 
in units of output. 

At each t there are three overlapping generations of individuals. A typical 
member of each generation lives for three periods, the first of which is spent as a 
child in the parent's household. The second period is spent as a young person 
working, having and raising children, as well as accumulating capital. The third and 
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last period of life is spent as an old person in retirement living off support received 
from each of one's offspring and from the sale of accumulated capital. All members 
of each generation have identical preferences defined over their consumption in their 
working and retired periods. Thus, in this model the only reason that an individual 
would want to have a child is the support the child will provide during her 
retirement. Firms buy capital from the retired and hire the young as workers. 
Markets for product, labor and capital are assumed to be competitive. 

Formally, a typical individual of the generation which is young in period t has 
n1 children (reproduction is by parthenogenesis!), consumes c:, c:+ 1 in periods t and 

t + 1, and saves s1 in period t. She supplies one unit of labor for wage employment. 
Her income from wage labor while young in period t is w1 and that is the only income 
in that period. A proportion a of this wage income is given to parents as old-age 
support. While old in period t + 1, she sells her accumulated saving to firms and 
receives from each of her offspring the proportion a of his/her wage income. She 
enjoys a utility U(c:, c:+ 1) from consumption. Thus her choice problem can be stated 
as: 

max U(c:, c:+ 1) 
St,nt>O 

(4) 

(5) 

First order necessary conditions of the above optimization problem are as follows: 

Ut(C:, c:+l)�At with equality if c:>o (6) 

U2(c:, c:+1) � A1+1 with equality if c:+1>0 (7) 

-A./Jr + }"t+l awt+l � 0 with equality if n1>0 (8) 

-A.r+A.r+tqr+t �0 with equality if S1>0 (9) 

where A1 and A1+ 1 are the Lagrange multipliers corresponding to the constraints (4) 
and (5) respectively. The analysis below assumes that there is an interior maximum 
in the sense that c: > 0, c:+ 1 > 0, n1 > 0 and s1 > 0. Let L1 be the number of adults in 
period t, and K1 be the stock of capital in the beginning of period t. We assume that 
capital depreciates in one period. Thus we have the following macro relationships: 

K1+1 =L1s1 and L1+1 =L1n1 (10) 

Let the initial capital and labor at t = 0 be given as K0 and L0. A 
competitive equilibrium path of the economy iff= < U, f, G) is a sequence 
{s1, n1, c:, c:+l'Lr+l'Kr+l'q1, W1, A1};;' such that equations (2)-(3) and (6)-(10) are 
satisfied. 

Assumption A:2. U is a strictly quasi-concave C2 function and 

lim U 1(c1, c2) = oo \fc2 > 0 and lim U 2(c1, c2) = oo \fc1 > 0 
ct-+0 cz-+0 

Assumptions A: 1 and A:2 imply that in a competitive equilibrium K1+ 1' L1+ 1 > 0, 
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for all t � 0. Equations (8) and (9) imply that q,+ 1 = awt+ 
1• Using equations (2)-(3) , 

the following holds in competitive equilibrium: e, 

J(kt+ d- k,+ d'(k,+ 1) e, 
f'(kt+1) a (11) 

Lemma 1. Under assumption A:l, equation (I 1) has a unique solution k1+ 1 = lf'(8 ,ja). 
Proof: See Raut [ 1992]. 

In order to find the rest of the equilibrium quantities, we note that k1+ 1 = � n, 
which holds under the assumption that capital depreciates fully in one generation. 
Substituting the solution lf'(O,ja) for k,+ 1> we gets,= n, lf'(OJa). Defining O,n1 + s1 = 
[01 + lf'(O,ja)]n1 asS, and noting that aw1+ 1 = 01q,+ 1, the budget constraints (4) and 
(5) can be written as c; = (1- a )wt-S1 and c;+ 1 = q1+ 1St. Substituting these in (6) 

and (7) (which are equalities at an interior maximum) and noting that qt+ 1 = � 
A.t+ 1 

from (9) we get 

-U1[(l- a)w ,-S,,q,+1St] + q1+1 U 2[(1-a )wt-St,q,+1St] = 0 (12) 

Lemma 2. Under assumption A:2, there is a unique solution S1 = H(w,, qt+ d to (12) .  

Given equilibrium lf'(a1/0) and H(·), the equilibrium n ,  and s1 are computed as 
follows: 

_H(wt,qr+d. d - H(w,, qr+d n1 - , an s1 - -----'---'--=---(}, + lf'(O,ja) lf'(O,ja)[O, + lf'(8,/a)] 
In what follows, we further simplify our exposition by restricting utility functions 
to the following Cobb.-Douglas class: 

U (c;, c: + 1) = b log c: + ( 1 - b) log c: + 1, 0 < b < 1 

Under the above assumption, 

which does not depend on q1 + 1. We also assume that 

Or =(} + yG(L,) + pw, 

(13) 

(14) 

In the above specification of the child rearing cost function, (} represents a 
time-invariant cost of child rearing to be thought of as the cost of material (i.e., 
commodity) cost. We allow the factors that bring about positive (or negative) 
externalities associated with population density (e.g., congestion or economies of 
scale in schooling) to influence the cost of child rearing by simply assuming that a 
component of child-rearing cost is proportional to the externality factor G (L,) .  
Parents' time cost is  another component of  child-rearing. Assuming that each child 
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requires a fixed amount, p, of parent's time, the third factor in (14) represents parent's 
foregone earnings as the time cost. 

The following proposition characterizes the underlying dynamical system of our 
endogenous growth model. 

Proposition l. Starting from any initial condition k0, L0 an economy C = <U, f, G) 
satisfying assumptions A: 1-A: 2, (13) and (14) has a unique competitive equilibrium 
path given by the solution of the following system of bi-variate iterative maps: 

k,+ 1 = 'l'( 8 + [y + p:(k,)]G(L,)) 

(1 - J)(l - a)w(k1)G(L,) 

k0 and L0 are given. 

Proof: Follows immediately from Lemma 2, (10), (13) and (14). 

(15) 

(16) 

The existence of competitive equilibrium path could be shown following the 
argument in Raut [1991]. Our purpose is to examine the global dynamics of the 
above system of difference equations. The present state of knowledge about the 
global dynamics of bivariate iterative maps are limited. In the past few decades, 
however, much has been established about the complex global dynamic behaviors 
of one-dimensional iterative maps. In the next section, we use these results in 
studying the global dynamics of our model by reducing the fundamental difference 
equations (15)-(16) to a univariate difference equation by assuming that child 
rearing cost is fixed over time. In the following section we demonstrate with 
examples the complex dynamic properties of the above bivariate system for general 
child-rearing cost functions. 

3. Constant child rearing cost, 01 = (} Y t ;:::: l 

Assumption A:3 (Constant child rearing cost). y = p = 0 in equation (14), i.e., constant 
child rearing cost, 8, = 8 ,  Vt;:::: l. 

Under assumption A:3 we have from equation (15) that k,+ 1 = k *, a constant, 
for all t;:::: 0. (16) now reduces to 

(17) 

(1 - J)(l - a)w* 
where ), = and w *  = f(k *)- k *f'(k *). Note that for this economy 

O +k *  
the difference equation (17) characterizes the competitive equilibrium path com
pletely. 

The dynamic properties of the competitive equilibrium path depends on the 
nature of external effect, G(L,), that population size has on productivity level. 
Suppose this relationship is negative for all population sizes and after rescaling of 
population size appropriately suppose this relationship is simply represented by a 
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linear function of the from, G(L,) = C(1- L,), C > 0. For this specification (17) 
reduces to the well-known logistic map, L, + 1 = j.tL,(l -L,), J.t = A.C > 0. As is well 
known the logistic map generates complicated dynamics for various values of J.l, see 
for instance (Devaney [1989] ). 

It is more reasonable to assume that at low levels of population density, G(L,) 
is an increasing function of L,, and at high levels of population density, G(L,) is a 
decreasing function of L,. We represent this relationship by the following functional 
form: 

(18) 

Substituting equation (18) in equation (17) we have the following iterative map: 

h ( ) h h ( )- -(x-£)2/2 11' x, + 1 = �' x, , w ere �' x = J.tXe , J.l = ��..,. (19) 

We further assume that 1 < J.l < e£212• Not much is known about the dynamic 
properties of the above map, which we briefly investigate now. 

3.1 Period doubling bifurcations of h!J ( ·) 

In this section we examine the qualitative properties of the periodic and fixed points 
of our dynamical system, (19), as we increase the value of J.l from J.l = 1. Denote by 

ttimes � 
h�(x) = hllohllo · · · hll(x). We will sometimes denote by x, = h�(x0), t � 0 with x0 = 
h�(x0). The shape of the phase diagram of h�' depends on the parameter values L > 0 
and J.l > 1. A typical phase diagram of the dynamic system in (19) is shown in Figure 1. 
It is clear that x = 0 is a locally stable steady-state and there are two other 
steady-states, L* = L- � and L* * ;::' L + J2logp. � 

Define the intervalS= [L*, L], where Lis such that L > L* and h�'(L) = L*. Note 
that this interval varies with J.l· L#ES is a critical point of h�' if h�(L# ) = 0. It is 
easily seen that the function hix) has only one critical point, L#, given by 

j 

0 0�� --------
L
�*- L _________ L

_#o----
L
'*�*�--� 

- Lt-
Figure 1. Phase diagram of h#(L,). 
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L# = 0.5 (L + jV+4). Position of the critical point relative to L** is critical in 
determining the nature of the dynamic equilibrium path. For instance, if L# > L**, 
a dynamic equilibrium path is monotonic around the steady-state L**, and in the 
interval (L*, L**]; if L# < L**, equilibrium path exhibits fluctuations around the 
steady-state L**; if L# coincides with L**, then if the system starts to the left of L**, 
it is monotonic, and if the system starts to the right of L**, it snaps back to the left 
of L** in the next period and remains monotonic thereafter. 

The dynamics of htJ(x) outside S is completely known: h:(x) converges to the 
trivial fixed point 0 as n--. oo. Moreover, note that since htJ ohtJ(I!) < L# V J1 > 1, we 
have that hiS) s; S. Hence Sand 9l+ - S are invariant sets under the iterations of 
the map hi·). Much of the interesting dynamic phenomena of the system (19) occurs 
in the invariant set S. Thus to study the dynamics of the map hfJ, without loss of 
generality, we restrict to the invariant state space S. 

We begin with defining a few concepts from the literature of one dimensional 
discrete dynamical systems. The forward orbit or dynamic path of the dynamic 
system starting at x is the set {h�(x)};;'. A fixed point of htJ(x) is a pES such that 
hip)= p. A periodic point of period n of the map htJ(x) is a fixed point pES of the 
map gtJ(x) := h:(x), i.e., h:(p) = p for the smallest integer n :2: 0; the corresponding 
orbit {h�(p) }� is called a periodic orbit. A fixed point pES is locally stable (attracting, 
an attractor, or sink ) if lh�(p)l < 1, unstable (repelling, a repeller, or a source) if 
lh�(p)l > 1, and non-hyperbolic if lh�(p)l = 1; h�(p) is known as the multiplier of the 
fixed point p. If the economy starts in the neighborhood of an attracting periodic 
point, then in the long-run the economy converges to the periodic orbit associated 
with the periodic point. We are interested in knowing how many attracting periodic 
orbits are there for different values of Jl, and how the stability properties of the 
periodic points change as we increase the value of Jl. For this purpose, the notion 
of Schwartzian derivative is very useful: 

Schwartzian derivative, ShtJ(x) of htJ(x) is defined as follows: 

Sh x = 
h;(x)

-�·[h;(x)
J

z 
tJ( ) 

h�(x) 2 h�(x) 

=-2[!_(x-L)2 +1+(x-L)(L-2x)
J-L[ L-2x -x-L]

2 

2 2 1-x(x-L) 2 1 +Lx-x2 

for all x =I= I!. 
The above is independent of Jl. Note that it is not possible to determine the sign of 
ShtJ(x) for all x, since it also depends on L. We fix L = 2 in our analysis, and compute 
ShtJ(x) numerically and find that ShtJ(x) < 0 V xES, x =I= L#. 

The stable set of a periodic point pES is defined as w•(p) ={xES I lim (hm)'(x)= p }. 
t-+ 00 J:l.. 

Since hfJ has one critical point, and since Schwartzian derivative Shix) < 0 
VxES, x =1= L#, from Devaney [1989, Lemma 11.7, p. 72] it follows that htJ has finitely 
many periodic points of period m for any integer m :2: 1; and from Devaney [1989, 
Theorem 11.4, p. 71] it follows that hfJ has at most 3 attracting periodic orbits. Since 
for any periodic point pES, w•(p) is a subset of the bounded set S, w•(p) is also 
bounded. Hence it follows from the remarks in Devaney (1989, pp. 73-74] that htJ 
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has, in fact, at most one attracting periodic orbit. We summarize these properties 
of h11 in the following proposition: 

Proposition 2. For J1 > 1, hix) has finitely many periodic orbits of period m for any 
integer m � 1 and at most one of these periodic orbits is attracting. 

For given L > 0, high values of J1 will move L** to the right of L. Note that 

h�(L**) = l- )2logJl(L+ )2 logJ1) 

h�(L*) = 1 + )2 logJI(L- )2logJ1) 

Since L-J2log J1 > 0, it is clear that the multiplier of the fixed point L* is always 
> 1, and hence the fixed point L* is always repelling. Let us examine the stability 
property of L** as we increase Jl · Note that h�(L**) is a decreasing function of J1 > 1; 
for J1 close to one, h�(L**) < 1 and for a higher value of Jl, h�(L**) = 0 and for even 
higher values of Jl, h�(L**) becomes ::::;; -1. The parameter value J1 = Jlt at which 
h�1(L**) = -1, i.e., at which L* * becomes non-hyperbolic, plays an important role: 
for J1 � Jlt, L** ceases to be an attracting fixed point. It will be convenient to denote 
this non-hyperbolic fixed point as L!*.lt can be easily seen that the parameter value 

. . . . - 2(1- logJl ) 
J11 >lis obtamed as the solutiOn of the equatiOn L = � . In the rest of the 

v 2logJ1 
paper whenever we refer to any numerical calculations, we fix the value of L = 2. 
For this L, one can easily compute the following: 

J11 = uon81; Li* = 2.732051; 
a(h;)'(Lt*) i = 7.239 > o. OJl 1'=1'1 

Thus by applying Devaney [1989, Theorem 12.7]\ there exists an interval I 
containing L!* and a function m(L) relating each LEI to a J1 with the property that 
hm(L)(L)_:f L but h;.<Ll(£t = L. Or in otherwords, suppose LEI, L =I L!*, and let 
(l = m(L), then at J1 = {l, Lis not a fixed point of hil but it is a periodic point of period 
2 of the maphil. Moreover, as shown in Devaney [1989, p. 91], 

2 ( **) 
m"(L!*) = 

-3Shll1 Lt 
. 

!__' (h;)' (L!*) OJ11l=ll1 
Since Sh,AL) < 0 1:/ LES and the denominator is strictly positive, we have that m(L) 
is convex to the L-axis as shown in Figure 2. 

The results are stated more precisely in the following proposition: 

Proposition 3. Let L!* = L**(Jld. For 1 < J1 < J11, L**(Jl) is the only attracting 
periodic point of hw Moreover, there exists an interval I containing L!* and a function 
m: I� 91, convex to the L-axis, such that m(L) � Jlt for all LEI and for all LEI, 
L =I L'f*, 

1 To apply Devaney's theorem, the following change of coordinates can be used z = x- L�* and 
g.(z) = h.(z + L�*)- Lr*. 
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I 
m(x) 

00�--------------7.�,------------------------� 
- p,-

Figure 2. Period doubling bifurcation of hp(L,). 

It is hard to derive the multipliers of the periodic points of period 2 for hll to see if 
they are stable; when they are stable, it is even harder to calculate the parameter 
value p,2 at which these periodic points become non-hyperbolic and go through 
period doubling bifurcations. However, for each discrete value of Jl at step ofO.OOOl 
we have numerically computed the dynamic paths for 1000 periods starting at 
different initial values x0; the last 300 values of each path are plotted against Jl in 
Figure 3. This shows complicated bifurcations of the map hll (x). 

Thus from our similation exercise we find that hll follows the similar period 
doubling bifurcation phenomenon as the widely studied logistic map. To sum up, 

y = 1; 'L = 2 

L 
4 

3 

2 

1 . 0 1.1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1. 7 
- ��-

Figure 3. Bifurcation of population dynamics. 
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we find that for 1 < Jl < 1.307281 = J11, the fixed point L **(Jl) is the only attracting 
periodic point. At Jl = 1.307281, the fixed point L**(Jl), ceases to be attracting, and 
two attracting periodic points of period two are born, they are attracting until they 
bifurcate at Jl = 1.4558 and four stable periodic points of period four are born, and 
so on. 

For most unimodal maps the above type of period doubling bifurcations is a 
route to chaos. In the next section we examine if hJJ also exhibits chaotic behavior. 

3.2 Chaotic dynamics of h" ( ·) 

Li and Yorke [1975] have shown that if�map hJJ has a periodic point of period three, 
or more generally, if hJJ admits a point LES such that the Li-Yorke condition, 

h!(L) � L < hp(L) < h;(L) 
is satisfied, then hJJ exhibits chaotic behavior in the sense that hJJ has periodic orbits 
of any integer period, there exists a uncountable set, W, of non-periodic states such 
that a pair of orbits orginating from any two initial states in W move apart and 
come close to each other infinitely often, and an orbit originating in W does not 
converge to any periodic orbit. (See Baumol and Benhabib [1989], Majumdar and 
Mitra [1992] and Nishimura and Yano [1994] for a statement and for other 
applications of the result.) 

In Figure 4 we have drawn the graphs of h!(x), h;(x) and hJx) for Jl = 1.65. 
Figure 4 shows that the graph of h! intersects the 45a line, and hence has a periodic 
point of period three. 

For another example, take Jl = 1.70, and L= 1.56, then it could be easily shown 
that h!(L) = 1.34, hJJ(L) = 2.41, h;(L) = 3.77 which satisfy Li-Yorke condition. Thus 
the map hJJ exhibits chaotic behavior for various values of Jl· 

u = 1.65 

[ = 2.9 

I h�<x> --->{ 
f f ( 

h�<x> ---f-> 
f ( ( ( 

h u<x> --+ --> 
I 

Figure 4. Phase diagram of h;(x), for n = 1, 2, 3 and Jl = 1.65. 



Dynamics of endogenous growth 787 

Moreover, from the period doubling bifurcation diagram of h" in Figure 3, it is 
clear that starting with a stable periodic orbit of period three for a parameter value 
somewhere in the neighborhood of f1 = 1.63, the system goes through a sequence of 
period doubling bifurcations as we increase the parameter value fl. 

It is easy to see from (17) that appropriate specifications of G(L1) can generate 
equilibrium paths with steady exponential growth in population. 

4. Time-varying child rearing cost 

In the literature on endogenous fertility, it is usual to assume that the cost of 
child rearing equals the wages foregone by the parent on the time spent on rearing. 
Unless the time varies inversely with the wage rate, the cost of child rearing will 
vary over time. In our model, even if we assume the cost to be constant, we find 
that the equilibrium wage rate is not constant. To be consistent, child rearing cost 
should be allowed to vary. Besides doing so also yields interesting dynamics. To 
simplify our analysis we assume that the production function is from the following 
Cobb-Douglas class: 

f(k) = k", 0 <a < 1. (20) 

Assuming further that() =  0, the bivariate system of difference equations, (15)-(16) 
reduces to the system: 

k 
_ aG(L1)[ y + p(1-a)k�] 

(21) t+1-
a(l-a) 

L1+ 1 = n1 = [(1- a)(1- ())][ a(1-a) ][ p(1 -a)k� ]· (22) 
L1 p a(l-a)+a y+p(l-a)k� 

(1 - a) (1 -()) (1 - a)(1 - ()) . . Note that n1 < . Thus whenever < 1, It IS seen from 
p p 

equation (22) that the working population converges to zero as t-+ oo, regardless 
of the process G(L1). 

Notice that if child rearing involves only the time cost, i.e., y = 0, then 
equilibrium fertility rate, n1 is constant, and the dynamics of the system is determined 
by the one dimensional iterative map in (21) which, however, is not constant over 
time. We first analyze the dynamics of the equilibrium assuming y = () = 0. 

From (22) it follows that n1, the growth in working population, is a constant 
(1 - a)(1- ())a(1-a) . n* = (mdependent of the process G(L 1)) so that L1 = L0(n*)' 

p[a(1 -a)+ a] 
From (21) we note that 

log k1 + 1 =log G(L1) + log a +  log p -log a+ log k1• (23) 

Denoting log k1 by x1, log G(L1) by g1 and log a + log p -log a by w, the solution to 
(23) is 

(24) 
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4.1. No long-run growth 

Suppose G(L) =[ex + pe-'Lr 1, ex> 0, P > 0, and ( > 0 then G(L) is bounded and 
converges to 1/ex or 1/(ex + p) depending on whether L1....,. oo (i.e., n* > 1) or L1 ....,.o 
(i.e., n* < 1) as t-" oo. Hence using (24) and noting that 0 <a< 1, we can say that 
as t....,. oo, x1 converges in either case. The average and marginal product of labor, 
and hence the welfare of each member of a generation, also converge to constants, 
with the working population increasing indefinitely in the first case and dwindling 
to zero in the second. More generally, if G(L) > 0 is bounded above, then (24) implies 
that (1-a)x1 is bounded above as well, so that the welfare of each member of any 
generation is bounded above, with the size of the working population growing or 
dwindling depending on whether n* is greater or less than 1. 

4.2. Super-exponential growth 

Assume the parameters to be such that n* > 1 (so that L1....,. oo as t--" oo) and G(L1) 
is unbounded. Suppose G(L1) behaves (for large values of L1) as e"L', /1 > 0 so that 
g1 behaves as J1L1 = J1L0(n*)'. Then from (24) it follows that X1+ 1 (for large values of 
t) is 

(25) 

11L (n*)' w 
Since n* > 1 >a, as t....,. oo, x1+ 1 behaves as 

0 
+ -- . This in turn means 

1-a/n* 1-a 

that k1 behaves asymptotically as exp 
0 

and the average product of 
[J..lL (n*Y ] 

1 -ajn* 
labor = G(L1)k� behaves as e<a+vLo)(n*>', where v is a positive constant! Thus one 
obtains super-exponential growth. 

4.3. Exponential growth 

Most endogenous growth models are geared to generate long-run exponential 
growth in per capita output. To generate long-run exponential growth in our model, 
suppose G(L1) behaves like A(L1)" for large values of L1 (/1 > 0 implies that G(L1) is 
still unbounded); then g1 behaves like 11log L1 = /1 [log L0 + tn*]. From (24) it can 

J..ln*t 
be shown that x1 + 1 behaves as -- for large values oft. This means that k1 grows 

1-a 
* 

exponentially at the rate _!!:!!:__ With G(L1) behaving like [L0(n*)']�' = (L0)"(n*)l'
1
, 

1-a 
exponential growth of k1 implies exponential growth in the average and marginal 
product of labor and in the welfare of each member of a generation. 
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4.4 Child rearing cost proportional to the externality effect 

and super-exponential growth 

Assume that the child-rearing cost is proportional to the externality factor G(L1) 
and other types of costs are absent by assuming that p = 8 = 0. For this type of child 
rearing cost, we show that the specification of G(L) = All' that led to stable 
exponential growth in the previous subsection now leads to super-exponential 
growth for almost all initial k0 and L0. 

Note that (21) in this case becomes 

uy 
k t+l = G(L1) (1- u)a 

using the above in equation (22), we have 

_ (1-<5)a(1- a) (1-u) 2 [uyG(L r-l)Jrr L L t+1- t· [a(1 - u) + u ]y (1 -u)a 

(26) 

(27) 

Substituting G(L1) = A L i  in (27), and taking logarithms of both sides, defining 
_ ((1- b)a(1- a) (1- u) 2 oA y ) 1r+1=logL1+1andw:=log · , we get: [a(1 -u) + u ]y (1 - u)a 

The solution of (28) is 

I w t t r= --+Dlvl +DzVz· flO" 

(28) 

(29) 

The initial conditionsD1 +D2-
w 

=logL0andD1v1 +D2v2-
w 

=log L0+ flO" flO" 
log n0 determine D1 and D2• Of course n0 depends on the given k0. Solving for D1 
and D2, we get: 

D1 = [( w 
+ logL0) (1- v2) + logn0] 1 

(30) flO" J 1 + 4fl<T 
D2=[( w

+ logL0) ( v1-1) -logn0] 1 
. (31) flO" J 1 + 4fl<T 

For smaU values of fl<T, J1 + fl<T � 1 + 2flu, so that we see from (29) that 11 = logL1 
grows asymptotically at the rate flO". From equation (27), it follows that log kr+ 1 
also grows at the same rate as well. Hence k1 and L1 grow super-exponentially. 

Consider the initial values of L0 and k0 given by: 

(1 - b)a(1 - a)(1 -uf 
k �  = 1 [a(1 - u) + u ]y 

uy 
---'---- G(L0) = k0. 
(1-u)a 

(32) 

(33) 
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It is clear then from repeated application of (26) and (27) that k1 and L1 remain at 
L0 and k 0  so that these are steady-state values. Further, any values other than these 
will lead to either L1 # L0 or k 1  # k 0  or both so that the economy will not be in a 
steady state. Since G(L) is monotonic, (32) and (33) produce unique steady state of 
the model. Noting that G(L) = Alf, equations (32) and (33) imply w = - f.UT log L0 
and n0 = 1 so that from equations (30) and (31) we find D1 = D2 = 0 so that the 
economy remains in a steady state from period zero. 
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