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Theories of long-run growth: 
old and new 

Lakshmi K. Raut and T. N. Srinivasan 

1 Introduction 

There has been a recent revival in theorizing about long-run growth 
after a hiatus of over two decades since the last spurt in the 1950s and . 
1960s. The latter was itself inspired much earlier by the pioneering . 
works of Frank Ramsey (1928) on optimal saving and of von 
Neumann (1945) on balanced growth at a maximal rate, and also to 
dynamic extensions of the Keynesian model by Harrod (1939) and 
later by Domar (1947). In the largely neoclassical growth theoretic 
literature of the 1960s and earlier, one could distinguish three 
strands. 

The first strand is positive, or, better still, descriptive theory aimed 
at explaining the stylized facts of long-run growth in industrialized 
countries (particularly the United States) such as a steady secular 
growth of aggregate output and relative constancy of the share of 
savings, investment, labor, and capital income in aggregate output. 
These stylized facts themselves had been established by the work of 
empirically oriented economists such as Abramovitz (1956), 
Denison (1962), and Kuznets (1966), who were mainly interested in 
accounting for observed growth. Solow's (1956, 1957) celebrated 
articles and later work by Jorgenson and Griliches (1966) and others 
are examples of descriptive growth theory and related empirical 
analysis. Uzawa (1961, 1963) extended Solow's descriptive one
sector model into a two-sector model. As Stiglitz (1990) remarked, 
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by showing that the long-run steady state growth rate could be 
unaffected by the rate of savings (and investment) and that, even in 
the short run, the rate of growth was mostly accounted for by the 
rate of labor-augmenting technical progress, Solow challenged then 
conventional wisdom. . 

The second strand is normative theory which drew its inspiration 
from Ramsey's (1928} classic paper on optimal saving. In contrast 
with the descriptive models in which the aggregate savings rate was 
exogenously specified (usually as a constant over time), the norma
tive models derived time-varying savings rates from the optimization 
of an intertemporal social welfare function. There were mainly two 
variants of such normative models: one-sector models (e.g. Cass, 
1965; Koopmans, 1965) and two-sector models (Srinivasan, 1962, 
1964; Uzawa, 1964). The contribution of Phelps (1961) is also 
normative, but it focused only on the steady state level of consump
tion per worker rather than on the entire transitional time path to 
the steady state and solved for that savings rate which maximized the 
steady state level of consumption per worker. 

The third strand of theory is primarily neither descriptive nor 
normative although it is related to both. Harrod's dynamic extension 
of the Keynesian model (with its constant marginal propensity to 
save) raised the issue of stability of the growth path by contrasting 
two growth rates: the warranted rate of growth that would be 
consistent with maintaining the savings-investment equilibrium and 
the natural growth rate as determined by the growth of the labor 
force and technical change. In this model, unless the economy's 
behavioral and technical parameters keep it on the knife edge of 
equality between warranted and natural growth rates, there would 
be either growing under-utilization of capacity if the warranted rate 
exceeds the natural rate or growing unemployment if the natural rate 
exceeds the warranted rate. Indeed this knife-edge property result
ing from Harrod's assumption that capital and labor are used in fixed 
proportions led Solow to look for growth paths converging to -: 
steady state by replacing Harrod's technology with a neoclassical 
technology of positive elasticity of substitution between labor and 
capital. 

von Neumann's (1945) model is also part of the third strand. In 
this model production technology is characterized by a finite set of 
constant returns to scale activities with inputs being committed at the 
beginning and outputs emerging at the end of each discrete produc-
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tion period. There are no non-produced factors of production such 
as labor or exhaustible natural resources. In the "primal" version, 
von Neumann characterized the vector of activity levels that permit
ted the maximal rate of balanced growth (i.e. growth in which 
outputs of all commodities grew at the same rate) given that the 
outputs of each period were to be ploughed back as inputs in 
the next period. In the "dual" version, a vector of commodity prices 
and an interest rate were derived which had the properties that the 
value of the output of each activity was no higher than the value of 
inputs inclusive of interest and that the interest rate was the lowest 
possible. Under certain assumptions about the technology von 
Neumann showed that, first, the maximal growth rate of output of 
the ·primal was equal to the (minimal) interest rate associated with 
the dual, and second, the usual complementary slackness relations 
obtained between the vector of activity levels, prices, growth, and 
interest rates. 

Although prima facie there is no normative rationale for balanced 
growth and the maximization of the growth rate, particularly in a set
up with no final consumption of any good, it turned out that the von 
Neumann path of balanced growth at the maximal rate has a "nor
mative" property. As Dorfman et al. (1958) conjectured and Radner 
(1961) later rigorously proved, given an objective that is a function 
only of the terminal stocks of commodities, the path starting from a 
given initial vector of stocks that maximizes this objective would be 
"close" to the von Neumann path for "most" of the time, as long as 
the terminal date is sufficiently distant from the initial date regard
less of the initial stocks and of the form of the objective function. 
This so-called "turnpike" feature was later seen in other growth 
models in which final consumption is allowed and production 
involves the use of non-produced factors. For example, in the 
Koopmans-Cass model in which the objective is to maximize the 
discounted sum of the stream of utility of per capita consumption 
over time, a unique steady state exists which is defined by the 
discount rate, the rate of growth of the labor force and the technol
ogy of production. All optimal paths, i.e. paths that maximize the 
objective function and start from different initial conditions, con
verge to this steady state regardless of the functional form of the 
utility function. As such all optimal paths stay "close" to the steady 
state path for "most" of the time. 

Barring a few exceptions to be noted below, in the neoclassical 
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growth models production technology was assumed to exhibit con
stant returns to scale and in many, though not all, models smooth 
substitution among inputs with strictly diminishing marginal rates of 
substitution between any two inputs along an isoquant was also 
posited. Analytical attention was focused on conditions ensuring the 
existence and uniqueness of steady state growth paths along which 
all inputs and outputs grew at the same rate - the steady state being 
the path to which all transitional paths starting from any given initial 
conditions and satisfying the requirements of specified descriptive 
rates of accumulation or of intertemporal welfare optimality con
verged. The steady state growth rate was the exogenous rate of 
growth of the labor force in efficiency units so that, in the absence of 
(exogenous) labor-augmenting technical progress, output per 
worker was constant along the steady state. 

Turning to the exceptions, Solow (1956) himself drew attention 
to the possibility that a steady state need not even exist and, if 
one existed, it need not be unique. Indeed output per worker could 
grow indefinitely even in the absence of labor-augmenting technical 
progress if the marginal product of capital was bounded below by 
a sufficiently high positive number. Helpman (1992) also draws 
attention to this. In addition, there could be multiple steady states 
some of which would be unstable if the production technology 
exhibited nonconvexities. We return to these issues below. 

There were also exceptions to the exogeneity of technical progress 
and the rate of growth of output along a steady state. In the 
one-sector, one-factor models of Harrod and Do mar and the two
sector models of Feldman (1928, as described in Domar, 1957) and 
Mahalanobis (1955) marginal capital-output ratios were assumed to 
be constant so that by definition the marginal product of capital did 
not decline. Growth rate was endogenous and depended on the rate 
of savings (investment) in such one-sector models and on the alloca
tion of investment between sectors producing capital and sectors 
producing consumer goods in the two-sector models. Kaldor and 
Mirrlees (1962) endogenized technical progress (and hence the rate 
of growth of output) by relating productivity of workers operating 
newly produced equipment to the rate of growth of investment per 
worker. And there was the celebrated model of Arrow (1962) of 
"learning by doing" in which factor productivity was an increasing 
function of cumulated output or investment. Uzawa (1965) also 
endogenized technical progress by postulating that the rate of 
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growth of labor-augmenting technical progress was a concave func
tion of the ratio of labor employed in the education sector to total 
employment. The education sector was assumed to use labor as the 
only input. Uzawa's model has influenced recent contributions to 
growth theory. 

The recent revival of growth theory started with the influential 
papers of Lucas (1988) and Romer (1986). Lucas motivated his 
approach by arguing that neoclassical growth theory cannot account 
for observed differences in growth across countries and over time 
and its evidently counter-factual prediction that international trade 
should induce rapid movements toward equality in capital-'-labor 
ratios and factor prices. He argued that 

in the absence of differences in pure technology then, and under the 
assumption of no factor mobility, the neoclassical model predicts a 
strong tendency to income equality and equality in growth rates, 
tendencies we can observe within countries and, perhaps, within the 
wealthiest countries taken as a group, but which simply cannot be 
seen in the world at large. When factor mobility is permitted, this 
prediction is powerfully reinforced. 

(Lucas, 1988, pp. 15-16) 
He then goes on to suggest that the one factor isolated by the 
neoclassical model, namely variation across countries in technology, 

has the potential to account for wide differences in income levels and 
growth rates . . . when we talk about differences in "technology" 
across countries we are not talking about knowledge in general, but 
about the knowledge of particular people, or particular subcultures of 
people. If so, then while it is not exactly wrong to describe these 
differences (as) exogenous . . .  neither is it useful to do so. We 
want a formalism that leads us to think about individual decisions to 
acquire knowledge, and about the consequences of these decisions for 
productivity. 

He draws on the theory of "human capital" to provide such a 
formalism: each individual acquires productivity-enhancing skills by 
devoting time to such acquisition and away from paying work. The 
acquisition of skills by a worker not only increases her productivity 
but, by increasing the average level of skills in the economy as a 
whole, it has a spill-over effect on the productivity of all workers by 
increasing the average level of skills in the economy as a whole. 

Romer also looked for an alternative to the neoclassical model of 
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long-run growth to escape from its implications that "initial condi
tions or current disturbances have no long-run effect on the level of 
output and consumption . . .  in the absence of technical change, per 
capita output should converge to a steady-state value with no per 
capita growth" (Romer, 1986, pp. 1002-3). His is "an equilibrium 
model of endogenous technological change in which long-run growth 
is driven primarily by the accumulation of knowledge by forward
looking, profit-maximizing agents" (p. 1003). While the production 
of new knowledge is through a technology that exhibits diminishing 
returns, "the creation of new knowledge by one firm is assumed to 
have a positive external effect on the production possibilities of 
other firms ... [so that] production of consumption goods as a 
function of stock of knowledge exhibits increasing returns; more 
precisely, knowledge may have an increasing marginal product" 
(p. 1003). 

It should be noted that the spill-over effects of the average stock of 
human capital per worker in the Lucas model and of knowledge in 
the Romer model are externalities unperceived (and hence not 
internalized) by individual agents. However, for the economy as a 
whole they generate increasing scale economies even though the 
perceived production function of each agent exhibits constant 
returns to scale. Thus by introducing nonconvexities through the 
device of a Marshallian externality Lucas and Romer were able to 
work with intertemporal competitive (albeit a socially nonoptimal) 
equilibrium. Both in effect make assumptions that ensure that the 
marginal product of physical capital is bounded away from zero and 
as such it is not surprising that in both models sustained growth in 
income per worker is possible. Thus both avoid facing the problem1 
that research and development (R&D) that lead to technical prog
ress are "naturally associated with imperfectly competitive markets, 
as Schumpeter (1942) had forcefully argued" (Stiglitz, 1990, p. 25). 
Later work by others (e.g. Grossman and Helpman, 1991) formu
lated models in which firms operating in imperfectly competitive 
markets undertook R&D. 

The literature on growth theory has grown by leaps and bounds in 
the 1980s. It is not our purpose to survey this literature critically. 
Instead we consider a few selected models that address the issues of 
long-run sustained growth in per capita income, possible multiplici
ties in long-run equilibria with different growth rates and converg
ence or otherwise to steady states where they exist. The models 
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are couched in three alternative frameworks within the neoclassical 
paradigm: descriptive growth a Ia Solow (1956), optimal growth with 
infinitely lived agents a fa Ramsey-Cass-Koopmans and finally the 
finitely lived overlapping generations a Ia Samuelson (1958) and 
Diamond (1965). Section 2 briefly reviews neoclassical growth mod
els to set the stage for a discussion in section 3 of models that 
generate sustained long-run growth with possible multiple growth 
equilibria. Section 4 takes another approach to endogenous growth 
by assuming that population density has an external effect on the 
production process so that fertility decision.s of individual house
holds determine the dynamic evolution of production possibilities 
endogenously. Unlike the recent growth literature, the model of 
section 4 is not geared to generating steady states and, in fact, its 
nonlinear dynamics generates a plethora of outcomes. Section 5 
concludes the chapter. 

2 Neoclassical growth models 

2.1 Solow 

The main motivation behind Solow's growth model, as mentioned 
earlier, was to explain the stability of the growth rates of US output 
during the first half of the twentieth century by means of a simple 
model. Solow assumes an aggregate production function 

(1.1) 

where Yt is aggregate output at time t, Kt is the stock of capital, Lt is 
labor hours at time t, At (A0 = 1) is the disembodied technology 
factor (i.e. index of total factor productivity) so that output at time t 
associated with any combination of capital stock and labor input is At 
multiplied by that at time zero with the same combination. Analo
gously bt (with b0 = 1) is the efficiency level of a unit of labor in 
period t so that a unit of labor at time t is equivalent to bt units of 
labor at time zero. Thus the technical progress induced by increases 
in bt is labor augmenting. It is easily seen that technical progress 
through A1 is Hicks neutral and that through b1 is Harrod neutral. 

Let us denote by � = KrfbtLt the ratio of capital to labor in 
efficiency units in period t, by k1 = K,!Lt the ratio of capital to labor 
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in natural units, and by y1 = Y11b1L1 theJevel of output or income per 
unit of labor in efficiency units. Solow made the following crucial 
assumptions. 

Assumption 1 (Neoclassical) 

F is homogeneous of degree one in its arguments and concave. 

Given assumption 1, the average product of an efficiency unit of 
labor, i.e. (llbrLr)F(k,, brL1) equals F(k,, 1). 

Let f( kr) = F( k,, 1). Clearly concavity of F implies concavity off as 
a function of kr. In factf is assumed to be strictly concave withf(O) = 
0. 

Assumption 2 (Inada) 

\imf'(k) = oo 
k--->0 

and limf'(k) = 0 
k--+"' 

In a closed economy, assuming that labor is growing exogenously 
as L1 = (1 + nYL0, human capital or skill level is growing exogen
ously as b1 = (1 + by, and capital depreciates at the rate {J per 
period, and denoting by c1 the level of consumption per efficiency 
unit of labor we have 

k _ Atf(kr) + (1 - o)k1- c, 
t+l-

(1 + n)(1 + b) 
(1.2) 

Solow further assumed that the savings rate is constant, i.e. ct = 
(1 - s)y1• Then (1.2) becomes 

k _ sAtf(k1) + (1 - o)kr 
t+l-

(1 + n)(l + b) 
(1.3) 

Equation (1.3) is the fundamental difference equation of the 
Solow model. If there is no disembodied technical progress so that Ar 
= 1 for all t, then the phase diagram of the dynamic system can be 
represented as in figure 1.1. It is clear from the figure that starting 
from any arbitrary initial capital-labor ratio k0 > 0, as t � oo the 
economy will converge to the steady state k* > 0 in which all the per 
capita variables, including per capita income, will grow at the rate b. 
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Figure 1.1 Phase diagram of Solow model . 
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Thus if b = 0 per capita income, consumption and savings do not 
grow along the steady state. Further, policies that permanently 
affect savings rate or fertility rate will have no long-run growth 
effects. 

It is clear from figure 1.1, however, that out of the steady state 
(i.e. in the short run) economies will exhibit growth in per capita 
income even without technological change. The rate of growth will 
depend on the initial capital-labor ratio and the time period over 
which the average growth rate is calculated. It can be shown that the 
average growth rate decreases as the initial capital-labor ratio k0 
(and hence initial income per head) increases. As the initial capital
labor ratio tends to k*, the average growth rate of per capita income 
converges to b, the exogenously given rate of labor-augmenting 
technical progress. This is indeed one of the convergence hypotheses 
that are tested in the recent empirical literature on growth. Policies 
that affect s and n clearly affect growth rates out of steady state. 
However, these growth effects are only temporary and the marginal 
product of capital will be declining over time. This predicted fall in 
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the marginal product of capital is not observed in US historical data, 
however. 

It was mentioned earlier that a primary goal of the recently 
revived growth theory is to build models that can generate sustained 
long-run growth in per capita income. A related objective is to 
ensure that the long-run growth rate of income (and in fact the entire 
time path of income) not only depends on the parameters of the 
production and utility functions but also on fiscal policies, foreign 
trade policies, and population policies. In most models of "new" 
theory, the primary goal is accomplished through increasing scale 
economies in the aggregate production. The resulting nonconvex
ities lead to multiple equilibria and hysteresis in some models so that 
history (i.e. initial conditions as well as any past shocks experienced 
by the economy) and policies have long-term effects. 

It will be recalled from earlier discussion, however, that per capita 
output can grow indefinitely even in traditional growth models if the 
marginal product of capital is bounded away from zero as the 
capital-labor ratio grows indefinitely. Thus the standard neoclassical 
assumption that the marginal product of capital is a strictly decreas
ing function of the capital-labor ratio is not inconsistent with inde
finite growth of per capita output. It has to diminish to zero as the 
capital-labor ratio increases indefinitely to preclude such growth. 
This is easily seen from equation (1. 3). 

Consider the simplest version of the neoclassical growth model 
with b1 = 1 and A, = 1 for all t so that k, = k1• Let f(O) = 0 and let the 
marginal product of capital, i.e. f(k), be bounded away from (n + 
b)ls (i.e. f(k) > (n + b)/s for all k). Strict concavity off(k) together 
withf(O) = 0 impliesf(k) > kf(k) > [k(n + b)]/s so that from (1.3) it 
follows that kt+1 > k,. This in tum implies that output per worker 
f(k1) grows at a positive rate at all t. Moreover, given strict concavity 
of f(k) it follows that f(k) is monotonically decreasing, and hence 
has a limiting value as k � oo, say Yy, that is at least as large as (n + 
b)ls .  As such it can be verified that the asymptotic growth rate of 
output and consumption will be at least as large as [s yy - (n + b)]/ 
(1 + n) � 0. The savings rates can be made endogenous using the 
Samuelson-Diamond overlapping generations framework or the 
Ramsey-Cass-Koopmans infinitely lived agent framework, thus 
leading to a theory of endogenous growth. Thus the neoclassical 
framework can endogenously generate long-run growth in per capita 
income. However, the assumption that the marginal product has a 
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positive lower bound is not particularly attractive since it implies that 
labor is not essential for production. 2 

2.2 Ramsey-Koopmans-Cass framework 

The optimal growth literature derives the savings rate endogenously 
by assuming that there is an infinitely lived representative agent who 
maximizes an additive time-separable intertemporal welfare 

with respect to { cr}o subject to the restriction (1.2) with Ac = 1, 
where u(.) is a twice continuously differentiable, strictly concave, 
and monotonic function. It is indeed odd that per period utility u(.) 
is a function of consumption per efficiency unit of labor rather than 
of consumption per worker. Only analytical convenience dictates 
this choice. Under assumption 2, it can be shown that the set of 
feasible { cc}o is compact and the above sum is a well-defined 
continuous3 function of { cc}o. Thus, the above problem has a 
solution. Let us denote the relationship in (1.2} with Cc = 0 and Ac = 
1 by the difference equation kt+1 = 'lfJ(kc). Assuming that f satisfies 
the lnada condition, one can show there exists a unique positive 
fixed point k for 1/J. Using dynamic programming techniques, one 
can show that the optimal capital accumulation path from any initial 
k0 < k is given by a nondecreasing policy function kt+1 = JT(kc) � kc. 
It can also be shown that an optimal { kc}o with k0 � k is a monotonic 
sequence bounded above, and hence kc converges to a limit point, 
say k* > 0 as t ---+ oo; k* satisfies the following:4 

f(k*) = (1 + n}(1 + b) - (1- 6) 
p 

(1.4} 

It is clear that the limit point is unique. Since it depends only on the 
production function and the parameters n, 6, p, and b, it is indepen
dent of the utility function u(.). Thus, for large t we have kt = k*bt, 
i.e. for large t, optimal kc, c c, and Yc will be growing at constant rates5 
(in this case, all rates are equal to the rate of growth of bt)· This is 
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the well-known turnpike result which states that starting from any 
initial capital-labor ratio the optimal path converges to the modified 
golden balanced growth path. 

It also follows that if there is no Harrod-neutral technological 
change, i.e. b = 0, there is no growth in the capital-labor ratio and 
hence no growth in per capita income, and if b > 0, per capita 
income will be growing at the rate b. 

It can be shown once again that, even when b = 0, there could still 
be growth in per capita income if the marginal product of capital is 
bounded away from zero. Moreover, the long-run growth rate in this 
case will depend on the rate of pure time preference p of the 
representative agent, the smaller the value p the larger being the rate 
of long-run growth. In so far as countries differ in p, their long-run 
growth rates will differ. In particular, if poverty is associated with 
impatience in the sense of a high value of p, then poor countries will 
have low growth rates. However, explaining intercountry differences 
in long-run growth entirely through differences in a parameter that 
represents tastes is not satisfactory since tastes need not be immut
able but could be acquired. 

2.3 Samuelson-Diamond overlapping generations 
framework 

Although the overlapping generations framework was not developed 
by Samuelson and Diamond to examine growth issues, it turns out to 
be another useful approach to endogenizing savings. In addition it 
has all the basic features of the other two neoclassical growth 
frameworks discussed in sections 2.1 and 2.2. We briefly describe the 
framework and set up the notation for later use. 

Assume that each agent lives for two periods, the first as a young 
person and the second as an old person. A young person of period t 
supplies one unit of labor, earns wages w1, consumes C: and saves st> 
taking the interest rate rr+l between period t and t + 1 as given. In 
the next period he retires and finances his old-age consumption C:+ 1 

with the returns from his savings while young. Formally, he maxi
mizes his lifetime welfare U(C:, C:+l) with respect to s1 subject to 

cJ + St = Wr 
C:+l = (1 + rr+l)sr 
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Denote the solution of the above problem by H(w1 , 1 + r1+1)· 
Assume that all markets are perfectly competitive, and producers 
are profit maximizers. For simplicity of exposition, we assume 
further that capital depreciates fully in one period and that capital 
has to be purchased a period ahead of its use in production. Then it 
follows from producer behavior that 

Wt = f(k1)- kJ'(kt) = m(kt) say 
bt 

(1.5) 

(1.6) 

Substituting (1. 5) and (1.6) in H(, ) and noting that kt+1 = ((1 + n)(1 
+ b)]-1st> one can write the fundamental difference equation of the 
Samuelson-Diamond model as 

(1. 7) 

If we specialize the functional form of the utility function to be 
Cobb-Douglas so that U = a log cJ + (1 - a) log cf+1, then (1.7) 
becomes very similar to (1. 3). Even for more general utility func
tions, most properties of the Solow model remain valid in this 
framework as well. 

3 Models generating sustained long-run growth 
and multiple equilibria 

3.1 Increasing returns 

At the outset a distinction should be made between generating 
sustained growth in output per head and endogenizing the rate of 
growth. For example, with the production function Y = KaLb where 
0 < a, b < 1 and a + b > 1 and with the labor force growing 
exogenously at the rate n there exists a unique steady state regardless 
of the savings rate in which output grows at the exogenous rate n( a + 
b - 1)/(1 - a) > 0. Thus increasing scale economies together with 
marginal product of capital strictly diminishing to zero (i.e. 0 < 
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a< 1) leads to sustained but exo genous growth. On the other hand, 
constant returns to scale with marginal product of capital bounded 
away from zero at a sufficiently high positive value leads to endo ge
nous and sust ained growth. Thus increasing scale economies by 
themselves need not generate endogenous growth. 6 While keeping 
this in mind, it is important to distinguish how different types of 
increasing returns to scale in aggregate production arise in various 
growth models. We consider only two types: locally increasing 
marginal product of capital and scale economies due to spill-over 
effects. For simplicity of exposition, we assume in this section that L1 
= 1, A1 = 1, b1 = 1 Vt � 0. The first type arises when the marginal 
product of capital f'(k) first increases with k and then decreases, or 
more generally when f"(k) = 0 has more than one but a finite 
number of solutions. 

The second type arises in the models of Lucas and Romer. 
Building upon the work of Arrow (1962) and Sheshinski (1967), 
Romer (1986) considers an economy in which there are n identical 
firms; each has a production function of the form Yi = G(Ki, Li, K) 
where Ki is the stock of knowledge capital or R&D capital employed 
by firm i and K = �t=l Ki, the industry level aggregate stock of 
knowledge, and Li is labor or any other inputs. K is assumed to have 
a positive spill-over effect on the output of each firm although the 
choice of K is external to the firm. Romer assumes that, for fixed K, 
G is homogeneous of degree one in other inputs. Supposing that all 
identical firms choose identical inputs, we can write Yi = G(Ki, Li, 
nK;) . Define F(Ki, Li) = G(Ki, Li> nK;) . It is obvious that F exhibits 
increasing returns to scale in the inputs Ki and Li. Again, besides 
those scale economies one needs to assume that the asymptotic 
marginal product of aggregate capital is positive to generate endoge
nous growth. Empirical support for the spill-over effect of R&D 
capital is found in several empirical investigations (see Bernstein and 
Nadiri (1989) on Canadian industry data, Jaffe (1986) on US manu
facturing firm level data, and Raut (1991a) on Indian manufacturing 
firm level data)? 

Following Romer, let us further assume that Li = 1 and denote the 
average product of labor by f(k) = F(k, 1). Both types of increasing 
returns make f(k) nonconcave and thus violate the neoclassical 
assumptions. The existence of a solution to optimal growth problems 
and turnpike re-;;ults that were found to hold in all the neoclassical 
frameworks need not hold anymore. Instead, increasing returns 
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open up the possibility for the marginal product of capital to be 
bounded away from zero, thus generating sustained long-run growth 
in these models. Moreover, the first type of increasing returns leads 
to multiple steady states, allowing history or the initial conditions to 
determine to which steady state the economy will converge. We 
illustrate these points with a brief discussion of a few contributions in 
the recent literature. 

Broadly speaking given an appropriate choice of an infinite
dimensional commodity space and a topology such that the set of 
feasible consumption paths is compact and tpe social ordering is 
continuous, the existence of an optimal path is assured. For 
compactness of a feasible set some kind of bounding of the 
technology is necessary. Majumdar and Mitra (1983) assume that 
f' ( oo) < 1 < f' (0) < oo and that there exists a k1 such that f"(k1) = 0, 
f"(x) > 0 for 0 � x < k1, andf"(x) < 0 for k1 < x. These assumptions 
imply that the marginal product of capital increases up to k = k1 and 
then decreases. Somewhat more general assumptions are made by 
Majumdar and Nermuth (1982); they assume thatf'( oo) < 1 and also 
the following. 

Assumption 3 (Nonclassical) 

f'(k) = 0 has finitely many roots, and there exists kmax > 0 such that 
f(kmax) = kmaxJ'(k) < 1 fork� kmax· 

They show that there exists an optimal solution, and the turnpike 
results depend on the magnitude of the rate of time preference. 
Define k > 0 to be a local modified golden rule if it is a local 
maximum of pf(k) - k and f(k) > k. Let a steady state be any 
solution of pf'(k) = 1. A set of local modified golden rules could 
clearly be a proper subset of the set of steady states. Assume that an 
inflection point of f(. ) does not occur at a steady state, and 
investment is irreversible. For such an economy, if the discount 
factor p is not too large or too small, then there exist neighborhoods 
around each golden rule such that, depending on the neighborhood 
in which the initial capital-labor ratio lies, the optimal solution 
converges monotonically to the corresponding local golden rule. 
However, if p is too small, then all optimal programs converge to 
extinction, i.e. to k = 0 andf(O) = 0. If pis close to unity, all optimal 
solutions converge to the golden rule path with the largest k. It 
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should be pointed out that the existen�e of multiple steady states and 
the dependence on the initial conditions for convergence of an 
optimal solution to a particular steady state are the consequences of 
the assumption· that the production function exhibits increasing 
returns of the first type. In these models, there is no sustained long
run growth in any of the equilibria. 

Romer (1986) posed the optimal growth problem in continuous 
time as follows: 

max J"" exp(- pt) u(cr) dt 
{c,} ;;. 0 0 

subject to 

(1.8) 

where h(. )kr represents the production function of "knowledge" 
capital. The rate of g rowth of knowledge is a function of resources 
devoted to its accumulation, i.e. savings as a proportion of the 
existing stock of knowledge. h is assumed to be concave and 
bounded above by a constant a. The latter ensures that asymptoti
cally there are constant returns to aggregate capital. The production 
function g(k1, nk,) for output (with n being the number of firms) is 
assumed to be globally convex as a function of k so that there are 
increasing returns. However, for a firm which treats the total know
ledge stock Kr = nkc as a parameter on which it has no influence, its 
production function g (k, K) is assumed to be concave in k. Thus 
economy-wide stock of knowledge is a Marshallian externality to 
each firm. The solution to the optimization problem that takes into 
account the effect of kc on both arguments of g (so that the external
ity is internalized) is socially optimal. By contrast, one could exoge
nously specify the second argument Kr of g(, ) and solve the optimal 
path for its first argument kr. Of course the solution for kc will in 
general depend on the exogenously specified path for Kr. By choos
ing that solution for which nkr is equal to kr for all t, one obtains the 
competitive equilibrium or privately optimal path. 

For the existence of optimal solutions, Romer uses the following 
bounding conditions. 
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Assum ption 4 There exist positive numbers Jl and 0 such that g(k, 
nk) < Jl + k8• 

He then shows that, if aO < p, then the above problem has a socially 
optimal solution, and under some additional assumptions there also 
exists a competitive equilibrium solution. 

As is to be expected, the social optimal cannot be supported as a 
competitive equilibrium without government intervention. In the 
absence of appropriate intervention (such as subsidies for private 
acquisition of knowledge financed by lump-sum taxation of consum
ers) each firm would choose to acquire less than the socially optimal 
amount of knowledge. Under assumptions that bound the social and 
private marginal product of capital from below by the discount rate 
p, Romer shows that k1 and c 1  grow without bound in socially and 
privately optimal solutions. 

3.2 Endogenous Harrod-neutral technological change 
and human capital 

One obtains long-run growth in per capita income in standard 
neoclassical growth models with labor-augmenting technological 
change. Per capita income is given by y 1  = F(k�> b1), where F is as in 
equation (1.1) with the further assumption thatA1 = 1 for all t. If b1 is 
growing exogenously at a constant rate b, as long as k1 grows at the 
same rate in the long run the marginal product of capital remains 
constant and bounded away from zero. Thus in the long run with k1 
and b1 growing at the rate b, y 1  will also be growing at the rate b. 

The role of human capital accumulation in Uzawa (1965) and 
Lucas (1988) is to endogenize Harrod-neutral (i.e. labor
augmenting) technological change. Let us briefly describe this 
mechanism following Lucas (1988). Suppose a worker of period t is 
endowed with b1 of human capital or skill and one unit of labor. He 
has to allocate his labor endowment between accumulating skills and 
earning wage income. If he devotes the fraction ¢1 of his time to the 
current production sector and 1 - ¢1 (where 0 :::::: ¢1 :::::: 1) to the 
learning sector (such as schooling or some vocational training pro
gram), he can increase his human capital in the next period by 

(1.9) 
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It should be noted that the marginal return to time devoted to skill 
accumulation is constant and does not diminish. As Lucas himself 
points out, this is crucial for generating sustained growth per capita 
consumption in the long run. Since the opportunity cost of time 
spent on skin acquisition is forgone income that could have been 
used for consumption or accumulation of physical capital, this cru
cial assumption should be viewed as the equivalent of assuming that 
the marginal product of physical capital is constant as in the Harrod
Domar model. 

The budget constraint for the representative agent is given by 

(1.10) 

From (1.10) it is clear that for given c 1  and k1, the agent faces a trade
off. He can spent more time currently (i.e. choose a larger ¢1) in the 
production sector and thus have a larger current consum ption or 
future phy sic al c apital, or have a lower cp1 and thus have larg er future 
hum an c apital (i.e. higher b1) and hence a larger future stream of 
output. It is clear that he would divide his savings between human 
capital and physical capital in a balanced way so that the marginal 
product of capital does not fall to zero. Under the further assump
tion that the production function is of the Cobb-Douglas form 

a+P=1 a,P>O 

where the spill-over effect is given by A(b1) = Abf, 0 < iJ., it can be 
shown that along the balanced growth path the capital-labor ratio 
and hence per capita income and consumption will be growing at the 
rate 

y == 
1 

- p + I' (1 - cp)D y 
1-{J 

where ¢1 is a constant equal to ¢. Since Yy is a function of ¢ which is 
endogenously determined, the growth rate of per capita income is 
endogenously determined. It should be noted that even if there is no 
spill-over effect, i.e. I' == 0, Yy is positive, and this of course is the 
consequence of the crucial assumption discussed above about the 
process of skill accumulation. 

The Lucas model is essentially a two-sector growth model. Human 
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capital and the process of its accumulation play essentially the 
same role as the capital goods sector in the two-sector model of 
Mahalanobis (1955). In this model marginal product of capital in the 
capital goods sector is constant - an assumption that is the equivalent 
of Lucas's crucial assumption about the process of human capital 
accumulation (Srinivasan, 1992). The rate of growth of income and 
consumption was endogenously determined in the Mahalanobis 
model by the share of investment devoted to the accumulation of 
capacity to produce capital goods. The share 1 - </>1 of time devoted 
to skill acquisition plays an analogous role in the Lucas model. 

Linearity of the technology of skill acquisition in the Lucas model 
is restrictive. It leads to a unique balanced growth solution. 
However, if a nonlinear (convex) technology is assumed, there could 
be multiple optimal balanced growth paths that are locally stable, as 
has been shown by Azariadis and Drazen (1990) in a Samuelson
Diamond overlapping generations model with endogenous human 
capital formation. 

4 Agglomeration and congestion effects of 
population density and long-run growth 

In Raut and Srinivasan (1991) we present a model that not only 
endogenizes growth and the process of shifts in production possib
ilities over time (i.e. technical change) but also generates richer 
dynamics than the models of recent growth theory. First, by assum
ing fertility to be endogenous,8 we preclude the possibility of aggre
gate growth being driven solely by exogenous labor force growth in 
the absence of technical change. Second, by assuming that popula
tion density has an external effect (not perceived by individual 
agents) on the production process through either a negative conges 
tion effect or a positive effect in stimulating innovation and technical 
change, we make the change in production possibilities endoge
nously determined by fertility decisions of individual agents. 
However, unlike the new growth literature, our model, which is an 
extension of Raut (1985, 1991b), is not necessarily geared to gener
ating steady states. In fact, the nonlinear dynamics of the model 
generates a plethora of outcomes (depending on the functional 
forms, parameters, and initial conditions) that include not only the 
neoclassical steady state with exponential growth of population with 
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constant per capita income and consumption, but also growth paths 
which do not converge to a steady state and are even chaotic. Per 
capita output grows exponentially (and super exponentially) in some 
of the examples. 

Our model draws on the insights of Boserup (1989) and Simon 
(1981) who, among others, have argued that the growth of popula
tion could itself induce technical change. In the Boserup model 
increasing population pressure on a fixed or very slowly growing 
supply of arable land induces changes in methods of cultivation, not 
simply through substitution of labor for land by choice of techniques 
within a known set of techniques but, more importantly, through the 
invention of new techniques. Simon also attributes a positive role for 
increases in population density in inducing technical progress. Since 
having a large population is not sufficient to generate growth 
(Romer, 1990), it is important to examine the mechanism by which 
population density influences innovation. However, neither of these 
two authors provides a complete theory of induced innovation. We 
do not provide one either: we believe that the inducement to 
innovate will depend largely on the returns and risks to resources 
devoted to innovative activity, and there is no particular reason to 
suggest that pre-existing relative factor prices or endowments will 
necessarily tilt these returns towards the search for technologies that 
save particular factors. Instead, we simply analyze the implications 
of assuming that technical change is influenced by population density 
(strictly speaking, population size) in a world where fertility is 
endogenous. 

More precisely, we assume that technical change in our model 
economy is Hicks neutral and that its rate is determined by the 
change in the size of the working population. Thus, instead of 
the aggregate production function in equation (1.1), we use the 
following: 

(1.11) 

However, for both consumers and firms in this economy A(Lt) is an 
externality. We introduce this externality in a model of overlapping 
generations in which a member of each generation lives for three 
periods, the first of which is spent as a child in the parent's house
hold. The second period is spent as a young person working, having 
and raising children, and accumulating capital. The third and last 
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period of life is spent as an old person in retirement living off support 
received from one's offspring and from the sale of accumulated 
capital. All members of each generation are identical in their prefer
ences defined over their consumption in their working and retired 
periods. Thus, in this model the only reason that an individual would 
want to have a child is the support the child will provide during the 
parent's retired life. Production (of a single commodity which can be 
consumed or accumulated) is organized in firms which buy capital 
from the retired and hire the young as workers. Markets for product, 
labor, and capital are assumed to be competiti�e. 

Formally, a typical individual of the generation which is young in 
period t has nt children (reproduction is by parthenogenesis!), con
sumes cf, cf+1 in periods t and t + 1, and saves st in period t. She 
supplies one unit of labor for wage employment. Her income from 
wage labor while young in period t is wt and that is the only income in 
that period. A proportion a of this wage income is given to parents 
as old age support. While old in period t + 1, she sells her accumu
lated saving to firms and receives from each of her offspring the 
proportion a of his/her wage income. She enjoys a utility U(cf, cf+1) 
from consumption. Thus her choice problem can be stated as 

subject to 

cJ + O tn t + s t = (1 - a) wt (1.12) 

(1.13) 

where (Jt is the output cost of rearing a child while young. 
Profit maximization of the producer yields (using the notation of 

section 2.3) 

(1.14) 

(1.15) 

In equilibrium, the private rates of return from investing in children 
and physical capital are equal so that arbitrage opportunities are 
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ruled out. This implies that 

(1.16) 

Putting equations (1.14) and (1.15) in equation (1.16) , we get an 
implicit equation linking kt+b 8t, and a. It can be shown that under 
standard neoclassical assumptions on the production function, we 
can solve for k1+1 as a function 1P{flr/a). Since kt+1 =stint (given the 
assumption that capital depreciates fully in one generation), the 
budget constraints (1.12) and (1.13) become respectively cJ = (1 -
a)w1 - S1 and cJ+l = {1 + r t+l)S1, where S1 = [81 + 1P(811a)]n1• S1 
could be thought of as total savings. 

Let us denote the solution of the above utility maximization 
problem as before by S1 = H(w1,1 + r t+1 ) .  We can now express the 
solutions for n1 and st as 

and (1.17) 

Equation (1.17) determines the dynamics of the system. Let us 
first consider the simplest case in which child rearing cost 81 = 8 for 
all t � 0. It is clear that k 1+1 = k* for all t � 1 in this case. Assuming 
further that the utility function is Cobb-Douglas, i.e. U = a log cJ + 
(1 - a) log cJ+b we have H(wt, 1 + r t+l) = (1 - a)(1 - a)wt. 
Equation (1.17) now yields 

or 

_ Lt+l _ (1 - a)(1 - a) *A(L) n t - -- - w t 
L1 8 + k* 

(1.18) 
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where .A = [(1 - a)(1 - a) w*]/(0 + k*). From (1. 11) we note that 
per capita income is given by y1 = A(L1)f(k*). Thus, the dynamics of 
population long-run behavior of per capita income hinge on the form 
of A(L1). It should be recalled that although the fertility decisions of 
individuals determine L1 and hence A(L1), this is an unperceived 
externality. A few possibilities are depicted in figure 1.2. 

Suppose G(L1) is a concave function which is zero at L1 = 0 and 
satisfies the Inada condition. Then, in the long run, population will 
be stationary and per capita income will be constant as in the 
standard neoclassical growth model. This is shown in figure 1.2(a). 
Now suppose that A(L1) is such that G(L1) is concave and G'(L1) is 
bounded away from 1. In this case, we have long-run growth in L1 
and hence in per capita income. This is shown in figure 1.2(b). 

Suppose now that A(L1) is a logistic function with a positive 
asymptote, such asA(L) = y exp[-(L- £)2/2], for L;::: O.lt can be 
shown (Raut and Srinivasan, 1991; see also figure 1.2(c)) that there 
are multiple steady states. Let us denote the nontrivial steady states 
as L* and L** (see figure 1.2(c)). Let L be the maximum of G(L1). 
The local dynamic properties of these steady states depend on the 
parameter values and the position of L relative to L ** plays a crucial 
role in the local dynamics. If the maximum Lis to the right of L **, 
then L ** is locally stable and there exists a neighborhood around 
L * * within which the system is monotonic. On the other hand, if L is 
to the left of L * *, there can be a nongeneric set of parameter values 
for which the system will exhibit endogenous fluctuations that can be 
damped, exploding or even chaotic. However, if a is partly 
influenced by the government through social security schemes, since 
a can affect y, the government can shift L to the right of L ** and 
thus, locally at least, a social security program can stabilize fluctua
tions. 

We considered more general childrearing costs (Raut and Sriniva
san, 1991, section 4a) involving parent's time and depending on the 
rate of technological change. Naturally these led to more compli
cated dynamical problems. We show that there could be super 
exponential growth in per capita income in the long run in the case of 
some specific functional forms for general costs of childrearing. 
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(c) 0 L* L L L** L, 

Figure 1.2 (a) Stationary population and income; (b) sustained growth in 
population and income; (c) complex dynamics of population and income. 

5 Conclusions 

The starting point of some, though not all, of the recent contribu
tions to growth theory is a misleading characterization of the neo
classical growth theory of the 1960s and earlier as implying that a 
steady state growth path always exists along which output grows at a 
rate equal to the exogenously specified rate of growth of the labor 
force in efficiency units. Thus in the absence of labor-augmenting 
technical progress, per capita income does not grow along the steady 
state path. Policies that affect savings (investment) rates have only 
transient effects on the growth rate of per capita output although 
its steady state level is affected. Even a cursory reading of the 
literature is enough to convince a reader that neo-classical growth 
theorists were fully aware that a steady state need not exist and per 
capita output can grow indefinitely even in the absence of technical 
progress provided that the marginal product of capital is bounded 
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away from zero by a sufficiently high positive number. Moreover, 
they showed that, once one departs from the assumption that the 
marginal product of capital m onotonic ally declines to zero as the 
capital-labor ratio increases indefinitely, multiple steady state 
growth paths are likely (only some of which are stable) and that the 
steady state to which a transition path converges depends on initial 
conditions. Attempts at endogenizing technical progress were also 
made by theorists of the era. 

We argue that the perceived problems of neoclassical growth 
theory are not inherent features of all the growth models of the era 
but only of those which assumed the marginal product of capital (or 
more generally of any reproducible factor) diminishes to zero as the 
input of capital (or that factor) is increased indefinitely relative to 
other inputs. Instead of directly relaxing this assumption about 
production technology the "new" growth theorists in effect make 
assumptions that are analogous to assuming that the marginal pro
duct of capital is bounded away from zero. In some of the models 
this is achieved by introducing a factor other than physical capital 
(e.g. human capital, stock of knowledge) which is not subject to 
inexorable returns. In doing so, some authors end up with an 
aggregate production function that exhibits increasing scale econo
mies. Unsurprisingly in such models multiple equilibria are possible. 

We present a model that takes a different approach to endogeniz
ing technical progress and growth by assuming fertility and savings to 
be endo genous and that the size of the total population has an 
external effect (of a Hicks-neutral type) through either the negative 
influence of congestion or a positive stimulation of faster innovation. 
Our model generates a rich set of growth paths of per capita income 
and consumption, some of which do not converge to a steady state 
and are even chaotic. 

Although the recent revival of growth theory does not constitute 
as much of a radical departure from its earlier roots as is sometimes 
thought, it contains a number of innovations, both theoretical and 
empirical. Further, by reviving policy interest in growth and 
development problems, the participants in the revival have per
formed a very useful service to the profession. 
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Notes 

Dedicated to the memory of Sukhamoy Chakravarty whose premature 
death deprived the world of a profound scholar and India of a dedicated 
planner. From his earliest publication (1957) Chakravarty contributed sig
nificantly to the theoretical and empirical literature on economic growth 
and planning. He was one of the first (Chakravarty, 1962) among the 
theorists to raise deep issues of the existence of an optimal growth path. 
We thank John Conlisk, Isaac Ehrlick, Elhanan Helpman, Robert Lucas 
Jr, Mukul Majumdar, Tapan Mitra, Assaf Razin, Nouriel Roubini, Xavier 
Sala-i-Martin, and Robert Solow for their valuable comments on an earlier 
draft. We apologize to each of them for not necessarily incorporating all 
their suggestions in the revision and they certainly are not responsible for 
any errors that still remain. 
1 However in Romer (1990) innovation is driven by profit-maximizing 

entrepreneurs. 
2 One can easily prove this as follows. Suppose 

inf 
aF = r > o 

(K,L) > o iJK 

Since F is homogeneous of degree one, F(1 ,  LIK) = iJF/iJK + 
(LIK)iJF/iJL � iJF/iJK > y > 0 .  Now suppose L � 0 ;  then it follows 
that F(1 ,  0) > 0. 

3 With respect to an appropriate topology in infinite-dimensional space. 
4 k* satisfying this equation is called the modified golden rule capital

labor ratio. 
5 When such a relationship holds for all t, we say that the economy is on 

a balanced growth path. 
6 We thank Robert Solow and Xavier Sala-i-Martin for pointing this 

out to us. 
7 However, Benhabib and Jovanovic (1991) do not find any evidence 

for spill-over using US macro data. 
8 There are a number of models in the literature in which the interac

tion of endogenous fertility and productive investment in human 
capital are analyzed in a growth context. Our purpose is not to survey 
this literature either. We refer the interested reader to one very 
interesting such model by Becker et al. (1990) . 
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